
A Demonstration of the DeDoS Platform for Defusing
Asymmetric DDoS Attacks in Data Centers

Henri Maxime Demoulin∗
University of Pennsylvania

Tavish Vaidya∗
Georgetown University

Isaac Pedisich
Nik Sultana
Bowen Wang

University of Pennsylvania

Jingyu Qian
Yuankai Zhang

Georgetown University

Ang Chen
Andreas Haeberlen
Boon Thau Loo

Linh Thi Xuan Phan
University of Pennsylvania

Micah Sherr
Clay Shields

Wenchao Zhou
Georgetown University

ABSTRACT
We propose a demonstration of DeDoS, a platform for mitigat-
ing asymmetric DDoS attacks. These attacks are particularly chal-
lenging since attackers using limited resources can exhaust the
resources of even well-provisioned servers. DeDoS resolves this
by splitting monolithic software stacks into separable components
called minimum splittable units (MSUs). If part of the application
stack is experiencing a DDoS attack, DeDoS can massively replicate
only the affected MSUs, potentially across many machines. This
allows scaling of the impacted resource separately from the rest
of the application stack so that resources can be precisely added
where needed to combat the attack. Our demonstration will show
that DeDoS incurs reasonable overheads in normal operations and
that it significantly outperforms naïve replication when defending
against a range of asymmetric attacks.

CCS CONCEPTS
• Networks → Denial-of-service attacks; Data center networks;
• Software and its engineering→ Scheduling;

KEYWORDS
Denial-of-Service attacks, Distributed Systems, Security, Real-time
scheduling
ACM Reference format:
Henri Maxime Demoulin, Tavish Vaidya, Isaac Pedisich, Nik Sultana, Bowen
Wang, Jingyu Qian, Yuankai Zhang, Ang Chen, Andreas Haeberlen, Boon
Thau Loo, Linh Thi Xuan Phan, Micah Sherr, Clay Shields, and Wenchao
Zhou. 2017. A Demonstration of the DeDoS Platform for Defusing Asym-
metric DDoS Attacks in Data Centers.

In Proceedings of SIGCOMM Posters and Demos ’17, Los Angeles, CA, USA,
August 22–24, 2017, 3 pages.
∗First Co-Authors

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5057-0/17/08.
https://doi.org/10.1145/3123878.3131990

https://doi.org/10.1145/3123878.3131990

1 INTRODUCTION
Distributed denial-of-service (DDoS) attacks have matured from
simple flooding to pernicious asymmetric attacks that amplify the
attacker’s strength by exploiting asymmetries in protocols [8–10].
These attacks typically involve clients launching attacks that con-
sume the computational resources or memory on servers in data
centers. Types of asymmetric DDoS vary, and are often targeted at a
specific protocol. An invariant of these attacks is that they exploit a
fixed resource. For example, the SlowLoris/SlowPOST attacks func-
tion by establishing HTTP connections with the victim webserver;
requests are sent at a very slow rate to inflate their lifetime, con-
suming connection resources at the target [11]. The ReDoS attack
uses specially crafted regular expressions that are slow to evaluate,
amplifying the cost of serving malicious clients’ requests [7]. Rene-
gotiation attacks exploit an asymmetry in the SSL/TLS protocol:
the server’s cost of engaging in a SSL/TLS handshake is ten times
that of a client’s [3].

A straightforward defense mechanism against asymmetric at-
tacks is simply to deploy more resources within the data center.
This is often the de facto defense deployed in production systems:
during the course of an attack, the service is automatically repli-
cated as virtual machines (VMs) on multiple machines to scale
“elastically” to support the extra load. However, this approach is
enormously costly and, as we will show, rather inefficient. When a
virtual machine comes under the load of a DDoS attack, the entire
machine is replicated. This causes replication of all resources of
the VM, regardless of which are being consumed. For example, if
only a TCP state table is being exhausted (e.g., due to a SYN flood),
the replication of the entire monolithic software stack mitigates
the attack, but does so at enormous overhead (since presumably
the TCP state table represents a minuscule portion of the system’s
overall footprint).

We present the demonstration of a radically different approach,
calledDeDoS, which aims to defuseDDoS attacks via fine-granularity
replication. DeDoS is the next version of our initially proposed
SplitStack architecture [1]. DeDoS has two key elements. First, we

71

https://doi.org/10.1145/3123878.3131990
https://doi.org/10.1145/3123878.3131990


SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA H. M. Demoulin and T. Vaidya et al.

A

B

C
D

E

A

B

C
D

E

A

B

C
D

E

A

B

C
D

E

A

B
D

E

CC C

(a))Monolithic)software (b))Graph)of)MSUs (c))Normal)schedule (d))System)under)attack (e)) System)after)MSU)C)has)been) split

Figure 1: Example use case of DeDoS. The monolithic software (a) is transformed into a dataflow graph (b) with smaller com-
ponents, called MSUs, which are then scheduled on the available machines (c). When an attacker attempts to overload one of
the components (d), DeDoS disperses the attack by generating additional instances on other machines (e).
propose to break up the monolithic network stack into small com-
ponents that can be moved and replicated independently. This is
inspired by the current trend towards micro-services, but our vision
goes much further: we aim to operate at a much smaller granular-
ity with composable components, each of which can handle some
small, focused aspect of an application that may be vulnerable to
resource exhaustion. Example components include code specifi-
cally for performing TCP or TLS handshakes. Second, we propose
an adaptive controller that makes real-time decisions on placing
these components within physical resources in a data center, and
then adaptively clones, merges, or migrates these components in
order to meet service-level agreement (SLA) objectives. When SLA
objectives are violated, this is treated as a potential attack, and
individual components that are overloaded due to a DDoS attack
are replicated.

The DeDoS architecture offers two benefits for defending against
asymmetric attacks. First, the fine-grained components make it eas-
ier for the defender to deploy all available resources on all machines
against the attacker, exactly as needed. For instance, DeDoS could
respond to a TLS renegotiation attack by temporarily enlisting
other machines with spare CPU cycles to help with TLS handshakes.
Second, and more importantly, the reactive replication approach
is not attack-specific and can thus potentially mitigate unknown
asymmetric attacks. Once DeDoS recognizes that a component is
overloaded or its throughput appears to drop, it can respond by
replicating that particular component – without having seen the
attack before, and without knowing the specific vulnerability that
the attacker is targeting. This allows a flexible and automatic re-
sponse against mixed attacks – which is especially useful because
DDoS attacks today tend to use multiple attack vectors [4].

2 DEDOS DESIGN
In DeDoS, each application consists of several small components
that we call minimum splittable units (MSUs). Each MSU is respon-
sible for some particular functionality: for instance, a web server
might contain an HTTP MSU, a TLS MSU, a page cache MSU, and
several other MSUs of a similar size (Figure 1a). Even the TCP/IP
stack itself could be a MSU, or it could be broken into even smaller
components, such as MSUs for congestion control, buffering, or the
three-way handshake.

Related MSUs can and do frequently communicate with each
other. For instance, the packets of an incoming HTTPS connection
might enter the system at a network MSU; from there, the data
might flow through the TCP/IP MSUs, it might be decrypted by

the TLS MSU, the request might be decoded by the HTTP MSU,
etc. Collectively, the MSU form a dataflow graph that contains a
vertex for each MSU and an edge for each pair of MSUs that can
communicate (Figure 1b). This dataflow graph is usually in the form
of a directed acyclic graph (DAG).

Each DeDoS deployment contains a central controller that de-
cides how many instances of each MSU should exist, and which
nodes they should run on. Initially, the controller makes a normal
scheduling decision, based on the application’s performance re-
quirements. For instance, it might decide that a certain number of
HTTP MSUs—along with the corresponding TLS MSUs, page cache
MSUs, etc.—is needed to answer each web request within 50ms,
and it might then instantiate this many MSUs and place them on
different physical machines (Figure 1c).

However, at runtime, the controller keeps collecting statistics
about the available resources and the performance of each MSU.
If it detects that some MSU instances are overloaded due to an
unknown attack (Figure 1d), it creates additional instances of the
MSUs that are under attack, and places them on machines where
the relevant resources are still available (Figure 1e).

DeDoS does not require applications to be written from scratch:
it is possible to split existing codebases into MSUs, although the
necessary (manual) effort depends on the codebase. In some cases,
the modular nature of the code lends itself naturally to splitting;
this was the case for the user-level TCP library that we use in our
demo. There are other networking codebases – such as Click [5] –
that already have a modular architecture and could presumably be
split easily. Even for legacy applications where full-scale manual
splitting is impractical, DeDoS can still be useful if a few particu-
larly vulnerable components can be split out, moved and replicated
independently.

Another possible approach is to – partially or fully – automate
the partitioning. Some domain-specific languages are already writ-
ten in a structured manner that lends itself naturally to this ap-
proach; for instance, a declarative networking [6] application can
be compiled to a MSU graph that consists of database relational
operators and operators for data transfer across machines. Work in
the OS community [2] has shown that even very complex software,
such as the entire Linux kernel, can be split in a semi-automated
fashion. We are developing ways to further automate this process
in our ongoing work.

Acknowledgements. This material is based upon work sup-
ported in part by the the Defense Advanced Research Projects

72



DeDoS Platform for Defusing Asymmetric DDoS Attacks SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA

Agency (DARPA) under Contract No. HR0011-16-C-0056, and NSF
grants CNS-1513679, CNS-1563873 and CNS-1527401. Any opin-
ions, findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect
the views of DARPA or NSF.

REFERENCES
[1] Ang Chen, Akshay Sriraman, Tavish Vaidya, Yuankai Zhang, Andreas Haeberlen,

Boon Thau Loo, Linh Thi Xuan Phan, Micah Sherr, Clay Shields, and Wenchao
Zhou. 2016. Dispersing Asymmetric DDoS Attacks with SplitStack. In ACM
Workshop on Hot Topics in Networks (HotNets).

[2] Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen Liedtke, Kevin J. Elphinstone,
Volkmar Uhlig, Jonathon E. Tidswell, Luke Deller, and Lars Reuther. 2000. The
SawMill Multiserver Approach. In Proc 9th ACM SIGOPS European Workshop.
109–114.

[3] IETF. 2011. SSL Renegotiation DoS. Accessed July 10, 2017 from https://www.
ietf.org/mail-archive/web/tls/current/msg07553.html.

[4] Christine Kern. 2016. Increased Use Of Multi-Vector DDoS Attacks Targeting
Companies. http://www.bsminfo.com/doc/increased-use-of-multi-vector-ddos-
attacks-targeting-companies-0001.

[5] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.
2000. The Click Modular Router. ACM Trans. Comput. Syst. 18, 3, 263–297.

[6] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M.
Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion
Stoica. 2009. Declarative networking. Comm. ACM 52, 11, 87–95.

[7] OWASP. 2017. Regular expression Denial of Service - ReDoS. Accessed July
10, 2017 from https://www.owasp.org/index.php/Regular_expression_Denial_of_
Service_-_ReDoS.

[8] John Pescatore. 2014. DDoS Attacks Advancing and Enduring: A SANS Survey.
Technical Report. SANS Institute.

[9] Christian Rossow. 2014. Amplification Hell: Revisiting Network Protocols for
DDoS Abuse. In Proc. NDSS.

[10] Fabrice J. Ryba, Matthew Orlinski, Matthias Wählisch, Christian Rossow, and
Thomas C. Schmidt. 2015. Amplification and DRDoS Attack Defense – A Survey
and New Perspectives. CoRR abs/1505.07892. http://arxiv.org/abs/1505.07892

[11] David Senecal. 2013. Slow DoS on the Rise. https://blogs.akamai.com/2013/09/
slow-dos-on-the-rise.html.

73

https://www.ietf.org/mail-archive/web/tls/current/msg07553.html
https://www.ietf.org/mail-archive/web/tls/current/msg07553.html
http://www.bsminfo.com/doc/increased-use-of-multi-vector-ddos-attacks-targeting-companies-0001
http://www.bsminfo.com/doc/increased-use-of-multi-vector-ddos-attacks-targeting-companies-0001
https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS
https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS
http://arxiv.org/abs/1505.07892
https://blogs.akamai.com/2013/09/slow-dos-on-the-rise.html
https://blogs.akamai.com/2013/09/slow-dos-on-the-rise.html

	Abstract
	1 Introduction
	2 DeDoS Design
	References

