
DeDoS: Defusing DoS with Dispersion Oriented Software
Henri Maxime Demoulin

∗

University of Pennsylvania
Tavish Vaidya

∗

Georgetown University
Isaac Pedisich

Bob DiMaiolo

University of Pennsylvania

Jingyu Qian

Georgetown University
Chirag Shah

University of Pennsylvania
Yuankai Zhang

Georgetown University

Ang Chen

Rice University
Andreas Haeberlen

Boon Thau Loo

Linh Thi Xuan Phan

University of Pennsylvania

Micah Sherr

Clay Shields

Wenchao Zhou

Georgetown University

ABSTRACT
This paper presents DeDoS, a novel platform for mitigating asym-

metric DoS attacks. These attacks are particularly challenging since

even attackers with limited resources can exhaust the resources

of well-provisioned servers. DeDoS offers a framework to deploy

code in a highly modular fashion. If part of the application stack

is experiencing a DoS attack, DeDoS can massively replicate only
the affected component, potentially across many machines. This

allows scaling of the impacted resource separately from the rest

of the application stack, so that resources can be precisely added

where needed to combat the attack. Our evaluation results show

that DeDoS incurs reasonable overheads in normal operations, and

that it significantly outperforms standard replication techniques

when defending against a range of asymmetric attacks.

CCS CONCEPTS
• Security and privacy→ Denial-of-service attacks;

KEYWORDS
Denial-of-Service; Distributed Systems;

ACM Reference Format:
Henri Maxime Demoulin, Tavish Vaidya, Isaac Pedisich, Bob DiMaiolo,

Jingyu Qian, Chirag Shah, Yuankai Zhang, Ang Chen, Andreas Haeberlen,

Boon Thau Loo, Linh Thi Xuan Phan, Micah Sherr, Clay Shields, and Wen-

chao Zhou. 2018. DeDoS: Defusing DoS with Dispersion Oriented Software.

In 2018 Annual Computer Security Applications Conference (ACSAC ’18), De-
cember 3–7, 2018, San Juan, PR, USA. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3274694.3274727

∗
First Co-authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6569-7/18/12. . . $15.00

https://doi.org/10.1145/3274694.3274727

1 INTRODUCTION
Denial-of-service (DoS) attacks have evolved from simple flood-

ing to pernicious asymmetric attacks that intensify the attacker’s

strength by exploiting asymmetries in protocols [33, 35, 36]. Unlike

traditional flooding attacks, adversaries that perform asymmetric

DoS are typically small in scale compared to the target victims.

These attacks are increasingly problematic; the SANS Institute de-

scribed “targeted, application-specific attacks” [33] as the most

damaging form of DoS attack, with an average of four attacks per

year, per survey respondent. Such attacks typically involve clients

launching attacks that consume the computational resources or

memory on servers. Types of asymmetric DoS vary, and are often

targeted at a specific protocol.

An invariant of these attacks is that they exploit a fixed resource.

For example, the SlowLoris/SlowPOST attacks function by establish-

ing HTTP connections with the victim webserver, sending requests

at a very slow rate to inflate their lifetime, consuming connection re-

sources (e.g., file descriptors) at the target [37]. Similarly, the ReDoS

attack uses specially crafted regular expressions that are slow to

parse, amplifying the cost of serving malicious clients’ requests [3].

Likewise, TLS Renegotiation attacks exploit an asymmetry in the

SSL/TLS protocol: the server’s cost of engaging in a handshake is

about ten times that of a client [1].

While traditional volumetric attacks can be defended against by

blocking transmissions on compromised machines [21], filtering

traffic at routers [30], or detecting bogus requests at end hosts [23,

28], such approaches are ineffective against asymmetric DoS. Since

asymmetric attacks tend to be relatively low-volume and often do

not appear different from legitimate traffic, they can easily circum-

vent these defenses over time.

A straightforward defense mechanism against asymmetric at-
tacks is simply to deploy more resources. This is often the de facto

defense deployed in production systems: during an attack, the ser-

vice is automatically replicated as virtual machines (VMs) or light-

weight containers, on multiple machines to scale “elastically” to

the extra load. Replicating all of the VM’s or container’s resources,

regardless of which are being consumed, is enormously costly, mak-

ing this approach unusable for most service providers. For example,

if only a TCP state table is being exhausted (e.g., due to a SYN flood),

the replication of an entire VM mitigates the attack, but does so at

https://doi.org/10.1145/3274694.3274727
https://doi.org/10.1145/3274694.3274727

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA H.M. Demoulin, T. Vaidya et al.

an enormous overhead (since the TCP state table is a minuscule

portion of the system’s overall footprint).

In light of the limitations of existing defenses, we present a

radically different approach called DeDoS that defuses DoS attacks
via fine-granularity replication. We advocate software development

in a modular fashion, such that components can be moved and

replicated independently.

DeDoS provides a framework which allows programmers to con-

struct more resilient applications through the use of fine-grained,

modular components. Ideally, each component handles some small,

focused aspect of an application that may be vulnerable to resource

exhaustion. Example components include code for performing TLS

handshakes or HTTP requests parsing. Crucially, with DeDoS, pro-

grammers do not have to worry about most of the deployment

specifics: DeDoS offers an adaptive controller that makes real-time

decisions on placing these components within physical resources

(e.g., machines in a datacenter), and then adaptively clones, merges,

or migrates them in order to meet service-level agreement (SLA)

objectives. When SLA objectives are violated, this is treated as a

potential attack, and individual components that are overloaded

are replicated.

The DeDoS architecture offers two benefits for defending against

asymmetric attacks. First, the fine-grained components make it eas-

ier for the defender to deploy all available resources on all machines

against the attacker, exactly as needed. For instance, DeDoS can

respond to a TLS renegotiation attack by temporarily enlisting

other machines with only spare CPU cycles to help with TLS hand-

shakes. Second, the replication approach is not attack-specific and

can thus potentially mitigate unknown asymmetric attacks. Once

DeDoS recognizes that a component is overloaded or its through-

put appears to drop, it can respond by replicating that particular

component – without having seen the attack before, and without

knowing the specific vulnerability that the attacker is targeting.

This potentially allows a flexible and automatic response against

even mixed attacks [25].

Specifically, we make the following contributions:

Architecture and design. We present the DeDoS architecture,

outlining design challenges and our approach to create software

as a dataflow of minimum splittable units (MSUs). We describe the

API, communications, and synchronization components of DeDoS.

Our focus is on supporting new applications written in DeDoS’

API: as services become increasingly modularized, they can ei-

ther adopt the DeDoS API, or offload some critical functionality to

DeDoS to mitigate asymmetric DoS attacks. For the sake of complet-

ing our argument, we also demonstrate how existing applications

written in traditional or domain specific languages [26, 29] can be

entirely ported to DeDoS.

Dynamic adaptation.Wepresent strategies for assigningMSUs to

physical machines, scheduling MSU executions assigned to threads,

and using a global controller to make decisions on cloning and

removing MSUs in the event of attacks.

Prototype implementation, case studies, and evaluation. As
motivating use cases, we deploy three applications using our pro-

totype implementation of DeDoS. These include a web server that

we develop from scratch using DeDoS’ dataflow API, and two ex-

isting software systems: a user-level transport library written in C

that we port over to DeDoS, and routing software written using a

declarative domain-specific language [29] that we compile into a

DeDoS dataflow. Our evaluation results show that the overhead of

DeDoS is comparable to equivalent code executed outside of DeDoS’

runtime. Moreover, DeDoS is able to defend against a wide range of

asymmetric attacks, maintaining significantly higher throughput

for a much longer amount of time in the presence of changing

attacks, comparable to traditional replication strategies.

DeDoS is not intended to be a cure against all possible DoS

attacks. If an attacker can saturate a system’s network links or com-

pletely consume the defender’s resources, then the attack will still

succeed. The goal of DeDoS is to better manage available resources

to mitigate the attack. When it cannot completely defend against

an attack, it aims to delay the attack’s effects for as long as possible

– ideally to the point where a human operator can put in place a

longer term fix. DeDoS is also not a replacement or competitor of

specialized defenses, such as hardware SSL accelerators [14]. These

hardware-based approaches are more efficient than DeDoS because

they are tailored to a particular attack vector, but are less generic in

dealing with future unknown attacks (or combinations of attacks).

2 MOTIVATING EXAMPLE
We consider a 2-tiered web service hosted in a data center, where

an HTTP server queries a database server in response to users’

requests. The attacker launches a TLS renegotiation attack [1] that

consumes CPU cycles on the HTTP server. Hence, legitimate re-

quests are being served very slowly, or not at all. In this typical

asymmetric attack, the attacker is unable to overwhelm the de-

fender’s network bandwidth, but succeeds by exhausting other

resources (here, CPU cycles).

Our goal is to automatically mitigate such an attack, even if it
has a new attack vector, and to maintain quality of service (QoS) to

the legitimate clients. DeDoS is not specifically designed to defend

against brute-force volumetric attacks that saturate a data center’s

ingress link, or exploits that take over data center machines.

2.1 Strawman solutions
One possible defense against DoS attacks is to filter or block suspi-

cious network traffic – either based on source addresses, specific

traffic content or other traffic characteristics. However, this relies

heavily on request classification, thus is susceptible to false posi-

tives and negatives. Moreover, it is difficult to differentiate between

legitimate spikes in traffic and actual attacks.

Another approach is to increase resource capacity via replication.
For instance, to handle a TLS renegotiation attack, an operator can

launch more web server VMs to sustain more connections. This

defense does not depend on accurate attack detection, but it can

be inefficient. In the TLS renegotiation example, even though the

attack is limited to the key generation logic (and thus stressing CPU

usage on the host), naïve replication replicates the entireweb server,
unnecessarily wasting non-affected resources such as memory.

2.2 DeDoS solution
Weobserve that overall, data centersmachines are under utilized [11],

but current software architectures cannot effectively use them. In

our example, the database servers’ CPUs will be mostly idle while

DeDoS: Defusing DoS with Dispersion Oriented Software ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

the web servers’ CPUs are overwhelmed. If the former’s CPUs were

able to alleviate the load on the latter’s by contributing their com-

putational power, the capacity at the bottleneck (TLS handshake)

would increase.

Achieving this requires designing application stacks as smaller

functional pieces that can be replicated and migrated independently.

This additional flexibility would enable an attacked service to use all
of the available datacenter resources for its defense by temporarily

enlisting other machines running different services, resulting in a

substantial increase in the service’s capacity and achieving better

QoS for legitimate clients.

For example, in TLS renegotiation, instead of replicating the

entire web server, we can instead replicate only the key genera-

tion logic. If the database servers have spare CPU cycles, they will

be able to accommodate execution of this logic and alleviate the

CPU bottleneck caused by the attack. In contrast, naïve replication

would not work when the database servers lack the entire set of

resource required to run additional HTTP servers. In other forms

of asymmetric attacks that exhaust other types of resources (e.g.

memory), one can adopt the same approach, in this case, replicating

the memory intensive component into other machines that have

spare memory.

3 DEDOS DESIGN
A DeDoS application consists of several components called mini-
mum splittable units (MSUs) (Figure 1). Each MSU is responsible for

some particular functionality. For instance, a web server might con-

tain an HTTP MSU, a TLS MSU, a page cache MSU, etc. (Figure 1a).

RelatedMSUs communicatewith each other. For instance, HTTPS

requests may enter the system at a network MSU, be decrypted

by the TLS MSU, and parsed by the HTTP MSU. Collectively, the

MSUs form a dataflow graph that contains a vertex for each MSU

and an edge for each communication channel (Figure 1b).

Each DeDoS deployment contains a central controller which

provides an API for programmers to deploy their application. The

controller can either receive a pre-computed allocation, or perform

an initial allocation plan to decide how many instances of each

MSU should exist, and which machines they should run on, based

on the requested performance requirements and available resources

(Figure 1c).

Additionally, the controller continuously collects runtime statis-

tics about available resources and the performance of each MSU. If

it detects that some MSU instances are overloaded (e.g., due to an

unknown attack; Figure 1d), it can create additional instances of

these MSUs, placing them on machines where resources are still

available (Figure 1e). Thus, the data center can defend itself against

the attack with all available resources, not merely the ones that

happen to be “in the right place.”

3.1 Minimum splittable units
When designing an application for DeDoS, the question of defining

the granularity and boundaries of MSUs arises. While smaller MSUs

can result in a more precise response during an attack—since it

allows DeDoS to replicate only the functions that the adversary

is actually targeting—too small and numerous MSUs can result in

unacceptable overheads because of the delay introduced on the

execution path. This tradeoff has already been unveiled in the past

with, for example, the fall of mainframe computers and the rise of

microservices [16, 19].

The general approach we advocate is based on the microservices

design [31]: MSU split points are appropriate when there are loose

couplings between components, functional domains are clearly

encapsulated, and individual components are provably stables.

For known attacks, it is also advantageous to purposefully de-

marcate MSUs to most optimally respond to the potential attack.

For example, to protect against a SYN flood, the portion of the TCP

stack that handles TCP connection state could be isolated into its

own MSU.

However, a key benefit of DeDoS is that it does not require

apriori knowledge of the attacks it defends against. Hence, in many

instances, programsmay not be perfectly spliced to optimally match

a novel attack. Indeed, this is our expectation and observation in

practice. In such instances, MSUs may contain features unrelated to

the attack, resulting in non-optimal resource allocation. However,

we emphasize that such duplication will always be preferable and
is very likely far better than naïve replication. In general, we posit

that splitting software components following a microservices-like

programming paradigm will yield significant protection against

DoS while incurring limited overheads. We empirically measure

these overheads in a number of applications, constructed using this

design pattern, in §7.

3.2 Inter-MSU communication
MSUs communicate with each other by exposing an API that can

be called by other MSUs. The API functions are asynchronous

and one-way. This enables efficient event-driven implementations

(analogous to SEDA [39]). If a call needs to return a value, this is

handled by another call in the reverse direction.

Communicating MSU instances can reside on different machines.

DeDoS makes this transparent to the MSUs by injecting a bit of

“glue code” that converts calls into a local function call (if the callee

is on the same machine) or a network packet (if the callee is remote).

3.3 Routing tables
When an MSU instance of type X wants to invoke a function on an-

other MSU of type Y , X does not need to know where the instances

of Y are currently located. DeDoS handles routing by maintain-

ing a routing table, configured by the controller, which contains

information about MSU types and implements customizable load

balancing policies and routing functions. By default, DeDoS spreads

the load evenly among MSU instances of the same type, enforcing

instance affinity to related packets (e.g., from the same flow or user

session). As we show below, we can extend this policy to implement

queue-length based routing.

3.4 DeDoS runtime API
So far, we have treated the dataflow graph as largely static. However,

the controller can also dynamically create new MSU instances. To

make this possible, each machine in a DeDoS deployment runs the

DeDoS runtime. When it is first started, the runtime process is an

empty shell: it contains the code for all the MSUs that the system

could create, but none of this code is active yet. The runtime listens

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA H.M. Demoulin, T. Vaidya et al.

A

B

C
D

E

A

B

C
D

E

A

B

C
D

E

A

B

C
D

E

A

B
D

E

CC C

(a)	Software	built	using	MSUs (b)	Graph	of	MSUs (c)	Normal	schedule (d)	System	under	attack (e)	System	after	MSU	C	has	been	cloned

Figure 1: Example use case of DeDoS. The software is built usingMSUs (a), represented as a dataflow graph (b). MSUs are then scheduled on the
available machines (c). When an attacker attempts to overload one of the components (d), DeDoS disperses the attack by generating additional
instances on other machines (e).

for commands from the controller. The add command creates a new

MSU instance, while remove deletes one. Those operations involve

adjusting the routing table of connected MSUs. MSU also expose an

API, to execute their main function, or access their internal state.

The full API is documented online [8].

3.5 Support for existing applications
DeDoS is a new platform which aims at improving applications’

resilience from the very beginning of their development process.

Consequently, our focus is on enabling new applications using

DeDoS’ model. Nevertheless, we do not require applications to

be written from scratch in order to benefit from DeDoS’ defense

mechanisms. We provide a proof of concept in our case study (§6)

by splitting a user-level TCP stack into MSUs. Since DeDoS does not

require the entire software to be partitioned, rewriting existing code

can start small by only carving out the most vulnerable component

while the rest of the application runs as a single MSU.

We note that it is possible to – partially or fully – automate the

partitioning. Some domain-specific languages are already written in

a structured manner that lends itself naturally to this approach. For

instance, a declarative networking [29] application can be compiled

to an MSU graph that consists of database relational operators and

operators for data transfer across machines (see §6). Work in the

OS community [19] has shown that even very complex software,

such as the Linux kernel, can be split in a semi-automated fashion.

4 RESOURCE ALLOCATION
To ensure that the applications meet their SLAs, DeDoS needs a

way to make and enforce resource allocations to MSU instances at

runtime. DeDoS performs resource allocation at two layers: each

machine schedules MSU instances locally based on their resource

needs, whereas a central controller is responsible for decisions re-
quiring a global view, such as cloning or merging MSU instances.

To enable runtime adaption, each machine has an agent that con-
tinuously monitors local MSUs, periodically submits statistics to

the controller, and is responsible for handling the controller’s com-

mands.

4.1 Machine-local scheduling
When an application is divided into a large number of fine-grained

MSUs, switching from one MSU instance to another is a very fre-

quent operation, and we cannot afford to enter the kernel every

time. Because of this, we privilege user level scheduling and context

switching, using a set of kernel threads that are each pinned to a

particular core. This approach has the additional advantage that it

does not require changes to the kernel.

DeDoS schedules MSUs at the granularity of events. On each

core, DeDoS maintains a local scheduler, and a “data queue” for

each of the local MSU instances, which stores the incoming mes-

sages. Whenever the core is idle, the scheduler thread picks an MSU

instance according to a chosen policy, picks a message from that

MSU instance’s data queue, delivers that message, and waits for the

MSU instance to finish processing it. Scheduling is partitioned and

non-preemptive—cores do not “steal” messages from other cores

and they do not interrupt MSU instances while they are processing

messages. Partitioned scheduling avoids inter-core coordination in

the general case and thus keeps context-switching fast.

By default, DeDoS uses a round-robin policy, which picks at

most ri messages from data queue i and then moves on to data

queue i + 1. The parameters ri can be adjusted by the controller at

runtime, e.g., based on the relative load of the MSU instances. We

design worker threads such that each can implement specialized

policies (e.g., Earliest Deadline First – EDF).

4.2 Initial MSU assignment
When a DeDoS deployment is first started or a new application

is launched, the controller finds an initial assignment of MSU in-

stances to machines, such that the application’s SLA goals (through-

put and end-to-end latency) are met. The assignment must be fea-
sible: each machine must have sufficient resources (e.g memory)

to execute the MSU instances that are assigned to it. To find such

an assignment, we can formulate them as constraints and use an

existing solver or bin-packing heuristic.

Since the controller cannot predict the effects of future attacks,

the computed assignment only maintains the SLAs in the absence of

an attack. However, the controller monitors the system at runtime,

using the statistics that are submitted by the agents. If it detects that

the SLAs are being violated (e.g., due to a DoS attack), it adjusts the

assignment to mitigate the effects of an attack, using the process

we describe next.

4.3 Cloning and merging
The controller supports customizable cloning and merging policies.

The DeDoS native heuristics (i.e., default policies) operate by ana-

lyzing the collected metrics; forming a decision about whether to

clone, merge, or do nothing; and executing the chosen action.

DeDoS: Defusing DoS with Dispersion Oriented Software ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Global Controller

Local Agent

…

Worker threads

Local Agent

…

Worker threads

Local Agent

…

Worker threads

…

Figure 2: DeDoS architecture. A controller manages local runtimes
(represented by dotted boxes).

As native policies, the controller attempts to clone an MSU if its

minimum reported queue length is greater than 0. The rationale

here is that the system is provisioned such that the expected ar-

rival rate is sustained, and in such conditions, no queue should be

built for any of the MSU instances. In addition, if all runtimes are

utilizing more than a configurable percentage of a resource (e.g.,

memory) and an MSU type accounts for a configurable percentage

of a runtime’s utilization of that resource, the controller will begin

to clone MSUs of that type. This latter policy targets the system’s

bottlenecks by increasing parallelization.

Once the decision to clone is made, the controller picks a satisfy-

ing machine for the new instance, favoring locality with the clone’s

neighbors in the dataflow graph. A local machine is best to mini-

mize network communication. Once a machine has been elected,

the controller picks the least loaded core which does not already

host an instance of the same type, and contacts the machine’s agent

to spawn the instance. The controller also updates all the relevant

routing tables to enforce the load balancing policy in place for this

MSU type.

An attempt to clone will fail if it is not possible to place the

clone on any available runtime or if the same type of MSU has been

recently cloned.

The controller removes cloned MSU instances when they are no

longer needed (e.g., when an attack ends). Two conditions must be

met for an MSU to be removed. First, the last runtime where a clone

has been placed must report a maximum queue length of 0 in the

last monitoring interval (following the rationale described earlier);

second, the MSU type must not be significantly contributing to

more than a configurable percentage of a resource consumption

on any runtime. An attempt to remove will fail if an attempt to

clone an MSU of that type was made in the recent past (to protect

against system oscillation), or if some configurable amount of time

has passed since the last removal of that type.

5 IMPLEMENTATION
The DeDoS implementation consists of 10K lines of C code, and is

available on GitHub [8] under GPLv3.

5.1 Overview
Our prototype (Figure 2) consists of two key components: a con-
troller that orchestrates all other machines and a local runtime
running on each machine.

Controller: The controller performs load balancing and responds

to DoS attacks. It takes as input DeDoS applications in the form of a

graph and assigns MSUs to machines based on the placement algo-

rithm described in §4. MSU cloning is on-demand and automated.

We set the following default parameters for DeDoS management

policies (see §4.3): the controller clones an MSU type if all runtimes

are utilizing more than 40% of the memory or file descriptor (FDs)

pool, and the type accounts for at least 50% of its runtime utilization

of that resource; for removal, theMSU typemust not be contributing

more than 40% of the memory or FDs pool on any runtime. Removal

fails if an attempt to clone an MSU of that type was made in the last

20 seconds, or if less than 5 seconds elapsed since the last removal

of that type or its dependencies. Those parameters are based on

our domain expertise of how our testbed performs.

The controller also establishes routing policies. Within a route

toward an MSU type, endpoints are weighted proportionally to the

ratio of all requests enqueued for that type, over the endpoint’s

queue length (effectively the inverse of the occupancy ratio of the

endpoint). This allows DeDoS to load balance requests across all

instances of a type.

Local runtime: Each local runtime schedules and executes MSUs.

With some notable exceptions explained below, the local runtime

maintains a POSIX thread for each CPU core, which schedules

the MSUs for execution. The specific MSU-to-thread bindings are

determined by the controller.

Controller-runtime communication: Each runtime maintains

long-lived TCP connections to the controller and every other run-

time instance. These connections are carried over an isolated man-

agement network, and are used to manage MSUs and to pass data

between remote MSUs. Additionally, the local agent at each run-

time periodically gathers MSU and system statistics (such as queue

length, execution time, number of file descriptors in use, etc) that

are then sent to the controller.

5.2 DeDoS local runtime
The internal design of the DeDoS runtime consists of MSUs, worker

threads, and local agents.

MSUs: MSUs are constructed as a collection of C/C++ functions

with a well-defined API. Each MSU maintains a data queue that
contains incoming requests. MSUs are executed within worker

threads (explained next) that persist in the local runtime. As output,

an MSUmay enqueue messages onto the data queues of other MSUs.

This is handled by efficient pointer manipulation when source

and destination are co-located, or by long-lived TCP connections

otherwise.

Worker threads: DeDoS proposes to either pin POSIX threads to

CPUs or not. Pinned threads are used for operations that avoid

blocking system calls, such as reading from non-blocking sockets

or TCP state table manipulation. A pinned worker thread may be

assigned multiple MSUs (its MSU pool). Pinned workers do not

involve the kernel’s scheduler and allow DeDoS’ operator to im-

plement their own scheduling MSU-aware algorithm. Pinning also

maximizes CPU utilization and reduces cache misses that would

otherwise occur if MSUs were migrated between cores.

In more detail, pinned threads run a scheduler (§4.1) that contin-

uously (1) picks an MSU from its pool, (2) executes it by dequeuing

one or more item(s) from its data queue and invoking the execute

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA H.M. Demoulin, T. Vaidya et al.

function of the MSU’s API, and (3) repeats. Pinned threads currently

schedule MSUs in a round-robin fashion.

In our current implementation, we assign MSUs that have block-

ing operations (e.g., disk I/O) to their own non-pinned threads, such

that they are scheduled by the Linux kernel as generic kernel-level

threads. In later versions of DeDoS, we anticipate supporting MSU

preemption and resumption, which will allow blocking MSUs in

the MSU pools of pinned threads.

Each worker thread keeps statistics on resource usage of each of

its MSUs, and global metrics such as their data queue lengths and

number of page faults. In addition, MSU’s API allow programmers

to implement custom metrics (e.g., frequency of access of a given

URL in an HTTP MSU). Those statistic are then gathered by the

local agent (explained below) to be sent to the controller.

Finally, each worker thread periodically runs an update man-
ager that processes the thread’s thread queue. Unlike the MSU data

queues, the thread queue is solely for control messages, and is

itself populated by the local agent. It stores requested configura-

tion changes such as creating and destroying MSUs. In effect, the

thread queue serves as a buffer of requested changes, and avoids the

overhead of locks and other consistency mechanisms that would

otherwise be required if the local agent directly manipulated the

worker threads’ data structures.

Local agents: Each runtime operates a local agent in its main

thread. The local agent is responsible for communicating with the

controller and other DeDoS runtimes over long-lived TCP connec-

tions. In particular, the local agent receives commands for configura-

tion changes from the controller and routes them to the appropriate

worker threads. In addition, at a configurable interval which we set

to 100ms, the local agent gathers statistics from all the threads and

forwards them to the controller.

6 CASE STUDIES
We demonstrate the feasibility and applicability of DeDoS by con-

sidering three case studies: a web server written using DeDoS’

MSU interface; an existing userspace protocol stack ported to De-

DoS; and an application written using a declarative domain specific

language [29] that has been translated into a DeDoS dataflow.

Web server. For our first case study, we implemented a simple web

server constructed as five MSUs. The I/O MSU accepts incoming

requests and steers them toward the Read MSU, which performs the

TLS handshake, deciphers data, and relays plaintext to the HTTP
MSU. The HTTP MSU implements NodeJS’s HTTP Parser [24].

Once the request is parsed, the HTTP MSU issues a call to the

database tier to retrieve some object file, then enqueues the request

to a Regex Parsing MSU, which uses the PCRE engine to parse it.

The final HTTP response is sent to the Write MSU, which wraps it

in a layer of TLS and sends it back to the client. We use OpenSSL

version 1.0.1f for TLS support in both Read and Write MSUs.

Importantly, with the exception of the I/O MSU, all of the web

server’s MSUs are event-driven and non-blocking. We favor non-

blocking MSUs to augment the overall utilization of our machines.

To avoid having to migrate socket states between machines, we

configured the controller to enforce that the I/O, Read, and Write

MSUs reside within the same DeDoS instance for a given client

connection. We use HAProxy [38] as a front-end load balancer,

allowing us to direct incoming client connections to any I/O MSU

on any DeDoS instance.

Our web server leverages DeDoS’ fine-grained modular architec-

ture to mitigate DoS attacks. In §7, we demonstrate the resilience

of our application against three DoS attacks: TLS renegotiation

attacks [1], ReDOS attacks [3], and HTTP SlowLoris attacks [37].

Userspace network stack. Our second case study consists of an

existing software project that we ported to run on DeDoS with min-

imal effort. PicoTCP [34] is an open-source userspace TCP stack

written in approximately 33, 000 lines of C code (as reported by

sloccount). We chose PicoTCP since it is well-structured and writ-

ten in a modular fashion, making it easy to manually determine

cut-points (i.e., to form MSUs).

We have separated out a standalone handshaking MSU from

PicoTCP.When a SYN flood attack occurs, the TCPHandshakeMSU

is replicated into multiple copies on the same or different machines.

Load-balancing across these clones is achieved by using a consistent

hashing scheme within the PicoTCP MSU: based on a hash over

the incoming packet’s four-tuple (source and destination addresses

and ports), DeDoS performs load-balancing by distributing the

handshaking requests (in the form of SYN, SYN/ACK, ACK packets)

to the various TCP Handshake MSU instances. Packets belonging

to the same three-way handshake (e.g., the client’s SYN and ACK)

are routed towards the same TCP Handshake MSU, obviating the

need to transfer state.

Given the modular nature of the PicoTCP code, separating the

TCP stack into separate MSUs was fairly straightforward. The bulk

of our efforts lay in wrapping PicoTCP’s “main loop” within an

MSU to allow DeDoS’s runtime’s scheduler to execute the MSU

according to its scheduling policy. Within the PicoTCP MSU, we

added functionality to re-inject SYN-ACKs generated by Handshake

MSUs into the PicoTCP stack for them to be sent back to the client,

and code to restore TCP state received from Handshake MSUs

(for successful connections) into PicoTCP’s internal TCP state data

structure.

In summary, with only minor modifications, we transformed the

monolithic PicoTCP application into a DeDoS-enabled version in

which handshake components could be replicated on demand, both

within the local machine and on remote DeDoS instances. Overall,

we changed less than 0.1% of PicoTCP’s original codebase.

Declarative packet processing.We also consider an application

that is written in a domain specific language. We select an ap-

plication that does routing (packet forwarding), written entirely

as a declarative networking [29] program. Declarative network-

ing programs are written in a variant of Datalog called Network
Datalog (or NDlog). An NDlog program consists of a set of rules,

where each rule is of the form h :- b1,b2,. . . , bn, indicat-
ing that a head tuple is generated so long as all body tuples b1, b2,
. . . , bn are available. For example, the rule packet(@Y,A,Data) :-
packet(@X,A,Data), Neighbor(@X,A,Y) results in all packets

arriving at X being forwarded to neighbor Y based on some at-

tribute A (e.g., the packet’s header data). Declarative networking

has been adopted for network forensics, datacenter programming,

and overlay routing.

Since these programs have their roots in the database relational

model, they can be compiled into an MSU dataflow of relational

DeDoS: Defusing DoS with Dispersion Oriented Software ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

10 50 100
Number of good requests per second

0

2

4

6

8

10
C

o
n
n
e
ct

io
n
 l
a
te

n
cy

 (
m

s)
PicoTCP

DeDoS

Figure 3: Connection latency for standalone PicoTCP and DeDoS-
enabled PicoTCP (“DeDoS”).

operators. For example, the body tuples are executed as a series of

pair-wise database join operations, additional filters in the form of

selection operators, and the head tuple is generated as a projection
operator. The generated tuple may be sent to the same or different

machine using DeDoS. We find such automatic translation to be a

promising method of adopting existing applications to DeDoS.

7 EVALUATION
In this section, we aim to answer two high-level questions through

several sets of experiments: (1) does DeDoS run with reasonable

overheads in normal operation, and (2) how well can DeDoS defend

against asymmetric DoS attacks, as compared to whole-system

replication? Our experimental testbed consists of a cluster of 8

machines connected via a 10 Gbps switch in a star topology. Each

machine has 8 1.80 GHz cores (with hyperthreading and DVFS

disabled), 64 GB of memory, and runs Linux kernel 4.4.0-62. We

note that a video demonstration of DeDoS is available online [2].

7.1 Overheads
To measure the overhead introduced by the DeDoS runtime during

normal operation, we run two applications described in §6 within

and outside of DeDoS on a single server machine.

Web server:We compare a DeDoS web server to a standalone web

server with the same implementation but compiled as a monolithic

application outside of DeDoS. Our workload consists of HTTPS

requests generated by Tsung [4] at an exponentially distributed

rate for a period of five minutes, with a mean of 2500 requests

per second (r/s). We average latencies over intervals of one sec-

ond. The standalone webserver has mean latency of 43ms, and

1.8ms standard deviation. DeDoS’ webserver has a mean latency of

48.5ms and 12.3 standard deviation. This accounts for a mean 10.5%

overhead introduced by DeDoS, which is caused primarily by the

enqueuing and dequeuing of data across MSUs. Because in their

current implementation, worker threads on DeDoS do not “steal”

work from remote queues, there are some rare instances of MSUs

sitting idles while others are building a queue, hence the higher

number of outliers with DeDoS.

PicoTCP: We compare a DeDoS-enabled version of PicoTCP to

the standalone monolithic (“vanilla”) version. The DeDoS-enabled

version uses a single worker thread on a single runtime and has

two MSUs: a handshake MSU and the remainder of the PicoTCP

stack as a separate MSU. As an application, we use a simple echo

server that mirrors back incoming requests.

We consider connection latency, the time required to complete

a TCP handshake as measured by the client. We measure the con-

nection latency over a 15-minute period. During this time, the

client continuously creates new TCP connections at a steady rate,

sends (and receives) 32 bytes of data, and disconnects. Figure 3

shows the distribution of connection latencies for the vanilla and

DeDoS-enabled versions of PicoTCP under different client request

rates. The DeDoS-enabled version incurs a modest 5.5% increase in

connection latency.

Next, we measure the throughput that both TCP stacks can

achieve. We create a number of different clients that simultaneously

access the echo server. Each client repeatedly sends and receives

1024 bytes, with a 10ms pause between transmissions. We observed

that there is no significant difference between the throughput that

both stacks can achieve. PicoTCP and DeDoS both reached their

maximum bandwidth of 57.66 Mb/s and 57.71 Mb/s respectively

around 100 simultaneous connections and the throughput remained

similar for more than 100 simultaneous connections. (The absolute

numbers are low because PicoTCP is a userspace network stack,

designed for portability instead of maximum performance. Our goal

here is to measure the overhead of the DeDoS runtime.)

Overall, our results suggest that running applications within the

DeDoS runtime does not significantly change the throughput or

the latency it can achieve.

7.2 Attack mitigation
To evaluate the efficacy of DeDoS in mitigating DoS attacks, we

launch ReDOS, TLS renegotiation, SlowLoris, SYN flood, and a

volumetric flood attack against our applications. The first three are

launched on the webserver, while the latter two are on PicoTCP

and an NDlog program respectively.

7.2.1 Attacks against webserver . We configure our testbed for

attacks against our webserver as follows: the webserver is deployed

on three machines while three other machines run instances of

an in-memory database. All web requests access the database, and

HAProxy is used to distribute HTTP and database requests. The

remaining two machines are used to generate legitimate (“good”)

and attack traffic respectively. To demonstrate DeDoS’ ability to

defend against changing attacks and reclaim resources, under dy-

namic traffic patterns, we run a two hours long experiment during

which attack durations are randomly distributed. Good traffic is

generated by Tsung, and exponentially distributed. We simulate

diurnal variations by setting Tsung’s distribution mean at 1500 r/s,

and increasing by slices of 500 r/s up to 3000 r/s, at which point

it gradually decreases back down to 1500 r/s. Tsung’s requests are

configured to time out after 1s if they cannot connect. When no at-

tack occurs, clients experience average latencies of 50ms. For attack

traffic, we develop a C client which generates malicious ReDOS

and TLS renegotiation requests, and use an existing Python-based

SlowLoris [20] attack tool.

Figure 4 shows our main findings for different attacks on the

HTTP servers for a single run of the experiment than ran contin-

uously for 2 hours. The top figure shows response times for suc-

cessful connections averaged every second, while the middle figure

presents the connection success rate during this experiment. The

bottom figure shows the number of MSU instances of a given type

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA H.M. Demoulin, T. Vaidya et al.

deployed on the system over time. Attacks occur during the period

colored in red. We compare DeDoS to two other approaches: (1) an

approach that does not replicate at all under attack (“standalone”),

and (2) an approach that naïvely replicates an entire webserver to

one of the database servers when under attack (“naïve”). Initially,

the DeDoS’ webserver has 4 Read and 2 Regex MSUs on each of

the three starting machines.

During the entire course of the experiment, DeDoS is auto-

piloting without inputs from human users. We observe that DeDoS

can accurately detect and react to the injected attacks based on the

resource allocation polices described in §4 without apriori knowl-

edge of the attacks. DeDoS can consistently and automatically de-

cide on an effective mitigation strategy against different types of

attacks. Figure 4 shows that DeDoS consistently outperforms stan-

dalone and naïve approaches, and sustains low latency and high

response rate while standalone and naïve can only provide limited

or sporadic services.

TLS renegotiation attack: This attack consumes the victim’s CPU

by having malicious connections repetitively triggering TLS hand-

shakes. In our setup, a single handshake requires about 2.1ms com-

putation time (we use a 2048-bits RSA key), and every malicious

request triggers 100 renegotiations before closing. During the first

TLS renegotiation attack in Figure 4, the attacker increases the

strength of the attack from 1 to 100 r/s over a period of 13 mins.

At the start of the attack, standalone performs better than DeDoS

until CPUs get overwhelmed by attack requests (around 75 r/s);

it increases the average latency for good requests to the order of

seconds. Naïve replication performs even worse and causes connec-

tion success rate to drop to almost 0% once the entire webserver

has been replicated to the database machines. This is due to paging

that occurs on the database server as a result of the additional mem-

ory footprint imposed by the cloned webserver. Even successful

connections experience latency on the order of tens of seconds.

During the attack, DeDoS’ controller observes abnormal levels of

pending requests in the system, and gradually increases the number

of Read MSUs from 12 to 39 (1 more on each original machine, plus

8 per database machine). Unlike naïve replication, Read MSUs have

a low memory footprint and do not cause paging on the database

machines. This results in average latency of 70ms for good requests

during attack.

Once the attack stops, the DeDoS controller observes that the

conditions explained in Section 4.3 are met, and reclaims resources

by tearing down the cloned MSUs.

The second TLS attack in Figure 4 shows the performance of

DeDoS under a steady state attack with 100 r/s instead of a grad-

ual increase in attack strength. Under this relatively hight attack

strength, CPU resources for standalone are quickly overwhelmed,

and connection success rate for good clients falls to 50% with 3s

latency on average. DeDoS applies the same policies for resource

management, maintaining 39 Read MSUs, and while its perfor-

mance drops momentarily, it manages to serve good clients with

an average latency of 70ms.

ReDOS attack: In this attack, each malicious request issues a com-

plex regular expression operation that exploits a PCRE vulnerabil-

ity [7], requiring approximately 100ms of computation time. The

first ReDOS attack increases attack strength from 1 r/s to 200 r/s

and lasts 9 mins. Similar to TLS renegotiation, standalone initially

does better than DeDoS until CPUs are overwhelmed by malicious

requests. On the other hand, DeDoS gradually increases the num-

ber of Regex MSUs (up to 27 new instances) and maintains 100%

success rate, but with an increased average latency of 150ms. We

observe much less variations in the number of Regex MSU than

Read MSU because of the nature of the workload: TLS handshakes

are much shorter, and performed over non-blocking I/O, while the

regex parsing operating cannot be preempted by DeDoS. The sec-

ond ReDOS attack is performed at a steady rate of 200 r/s over

11mins. Standalone clients almost instantly experience average la-

tencies on the order of seconds after the attack is launched. DeDoS,

while initially overwhelmed as well, quickly recovers by spawning

27 new Regex MSUs, managing to keep the latency on the order of

tens of milliseconds.

HTTP SlowLoris: This attack targets the connection pool of the

webserver by exhausting the file descriptors (FDs) available for the

process. The attack works by opening a connection to the server,

and slowly sending HTTP headers one after the other, at such a

pace that the server keeps each connection open for a significantly

longer time than usual. We configure our kernels to allow each

process to open 2
13

concurrent FDs (from an initial value of 2
10
).

We configure the attack tool to open up to about 41K concurrent

connections to the webserver during 17mins. Standalone is able to

withstand the attack until the FDs limit is reached (in about 220

seconds). Then the connection success rate quickly drops to about

3 r/s, and the good requests experience a sharp increase in latency,

since the webserver threads are kept busy with processing HTTP

headers that are continuously sent from malicious clients. DeDoS,

on the other hand, is able to spawn 22 new Read MSUs on each

of the database server, increasing its global file descriptors pool,

and allowing it to sustain 100% successful connection rate. Due to

paging, naïve is unable to respond to a majority of the connections.

7.2.2 Additional attacks. In addition to the attacks discussed on

the web server, we discuss two more attacks and their mitigation

using DeDoS.

SYN flood attack: Our SYN flood experiment consists of a num-

ber of “good” (i.e., non-attack) clients accessing an echo server

built on top of PicoTCP. Each good client attempts 10 requests per

second, where each request establishes a TCP connection, sends

and receives 32 bytes of data, and then closes the connection. A

TCP connection is considered successful only if the handshake

completes within 60 seconds. The SYN flood is launched after one

minute of normal traffic, runs for three minutes, and then stops. We

use hping3 to launch SYN flood attacks and vary the intensity of

the flood. The experiment continues for an additional two minutes

(during which no attack occurs) to observe the recovery period.

Since under normal conditions, an application’s use of TCP is

tightly coupled to (i.e., inseparable from) the machine’s local net-

work stack, standalone PicoTCP is assigned a single process on a

single machine. We set the size of its connection buffer to 1MB,

corresponding to 26,214 pending connections. We note that this

limit is significantly larger than the 2
10

pending connection limit

offered by default on Linux.

In contrast, DeDoS can mitigate a SYN flood by cloning MSUs,

potentially on other hosts. Our DeDoS-enabled version of PicoTCP

consists of separate MSUs for performing the handshake and for

DeDoS: Defusing DoS with Dispersion Oriented Software ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

103

105

La
te

nc
y

(m
s)

SlowlorisTLS TLSRedos Redos

Naive Monolithic DeDoS

0

2000

Re
sp

on
se

Ra
te

0 120Time (min) 0
50

of

M
SU

s write regex http read socket

Figure 4: Requests latency and success rate during TLS renegotiation, ReDOS, and SlowLoris attacks on the web server.

0

10000

20000

30000

40000

50000

60000

C
o
n
n
e
ct

io
n
 l
a
te

n
cy

 (
m

s)

Success %

Attack Window

PicoTCP

0 50 100 150 200 250 300 350 400

Time (seconds)

0

10000

20000

30000

40000

50000

60000

C
o
n
n
e
ct

io
n
 l
a
te

n
cy

 (
m

s)

Success %

Attack Window

DeDoS

0

20

40

60

80

100

120

S
u
cc

e
ss

 p
e
rc

e
n
ta

g
e

0

20

40

60

80

100

120

S
u
cc

e
ss

 p
e
rc

e
n
ta

g
e

Figure 5: Handshake latency of good clients under a SYNflood (2000
SYNs/sec) with standalone PicoTCP (top) and DeDoS with 3 Hand-
shake MSUs (bottom). Vertical lines denote the start and end of the
SYN flood. The right y-axis plots the good clients’ average percent-
age of successful TCP handshakes.

transferring data. Each instance of a Handshake MSU is provided

with a 1MB connection buffer. We operate the PicoTCP MSU (the

non-handshake related portion of TCP) on a single machine that

also hosts the echo server. We use three other physical machines

in our cluster and spawn a maximum of three additional Hand-

shake MSUs per machine. To evaluate the efficacy of DeDoS, we

vary the number of Handshake MSUs (by manually overriding the

controller’s actions) and measure system performance.

We consider the success rate of TCP handshakes during the inter-

val between the first and last instances in which a TCP connection

failed, as observed by a good client. This reflects the steady state of

the attack and avoids the “ramp up” period in which the attack has

not yet become effective.

Our results show that DeDoS is able to provide superior ser-

vice throughout the attack. Figure 5 shows the connection latency

of good clients during a 2000 SYN/second attack. On the second

y-axis, we show the average percentage of successful TCP hand-

shakes (“success percentage”) computed over a two-second interval.

PicoTCP (top graph) fails to service good requests as soon as the

attack starts—the percentage of successful TCP handshakes almost

immediately drops to below 10%. The few connections that are

successful experience very high latencies (first y-axis).

1 2 3 4 5 6 7 8 9

Number of handshake MSUs

0

20

40

60

80

100

S
u
cc

e
ss

 p
e
rc

e
n
ta

g
e
 i
n

st
e
a
d
y
 s

ta
te

 u
n
d
e
r

a
tt

a
ck

47.15

81.32
84.47

100.0

12.9

54.03

63.24

71.13

83.97

92.42
100

2.82

41.48

53.28

62.2
69.3

76.71

84.98
89.17 91.67

1000 SYNs per second

2000 SYNs per second

3000 SYNs per second

Figure 6: Percentage of successful TCP connections with varying
numbers of Handshake MSUs during a SYN flood.

1 5 10 15 20 25 30 35 40
Number of clients

0

500

1000

1500

2000

2500

3000

T
h
ro

u
g
h
p
u
t

(p
kt

/s
)

Standalone
DeDoS-Single
DeDoS-Clone

0.0

0.2

0.4

0.6

0.8

1.0

p
e
rc

e
n
ta

g
e
 r

e
ce

iv
e
d

Figure 7: The throughput of the declarative packet processing appli-
cation when under DoS attack.

In contrast, with three cloned Handshake MSUs running on

the same physical host (bottom graph of Figure 5), DeDoS is able

to achieve an average success percentage of approximately 64%

during the steady state of the attack and recovers quickly after

the attack ends. (The stratified “bars” in the figure are due to TCP

retransmissions and TCP backoff.)

Figure 6 shows the scalability of DeDoS and the improved re-

sponse to various SYN floods with increasing resources. For a given

attack strength, DeDoS is able to serve more legitimate requests as

the number of handshake MSUs increases. Here, Handshake MSUs

are equally distributed across the cores on three physical machines.

Notably, we are able to completely mitigate the attack (as measured

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA H.M. Demoulin, T. Vaidya et al.

by successful client TCP connections) for moderate attack rates of

1000 and 2000 SYNs/second with four and seven MSUs, respectively.

Declarative packet processing attack: In our final experiment,

we launched an attack against the declarative packet processing

application described in §6. We initialized the packet processing

application with a large in-memory neighbor table, rendering naïve

replication too expensive in this case. Our workload consists of

a varying number of clients that forward packets via our appli-

cation. We increase the attack rate by using more clients to send

more traffic. Figure 7 shows the throughput (pkts/s) that can be

processed by (i) a standalone implementation, (ii) a DeDoS-enabled

application with cloning disabled, and (iii) a normal DeDoS-enabled

application. As before, the results show that standalone and DeDoS

achieve comparable throughputs (which indicates low overhead),

but that cloning enables DeDoS to handle roughly twice as many

clients during an attack.

8 RELATEDWORK
Volumetric attacks: Most existing DoS defenses focus on volu-

metric attacks, e.g., the attack on Dyn’s DNS service [18]. Zargar et

al. [41] provides a detailed survey. These defenses are orthogonal to

DeDoS, whose main focus is asymmetric attacks. They are also com-

plementary to DeDoS, and can be deployed together: for instance,

we can deploy traditional traffic scrubbing as an initial defense to

filter out certain suspicious traffic, and then use DeDoS to handle

the attack traffic that cannot be easily recognized as suspicious;

moreover, the fine-granularity cloning strategy in DeDoS can also

help mitigate volumetric attacks as well.

Amplification attacks: Newer attacks, such as reflective denial-

of-service (DRDoS) attacks exploit network protocols to launch

amplification-based attacks [35]. DeDoS may be useful for defend-

ing against these attacks, and we plan to investigate this in future

work.

Dispersion-based defenses: DeDoS [13] is a type of dispersion-
based defense against DoS attacks. Load balancing strategies [27,

30, 32] can also disperse the effect of DoS attacks, but they tend

to require a significant amount of redundancy and is costly in

terms of resource management. DeDoS is also inspired by the Split-

Stack architecture [12]; relative to SplitStack, DeDoS comes with

novel schemes for resource management and automated cloning,

a concrete implementation, as well as a thorough experimental

evaluation.

Cloning-based defenses: XenoService dynamically clones web-

sites when they are under attack [40]. Bohatei [15] also dynamically

launches more VMs to defend against known attacks. Similarly, Jia

et al. [22] describe a technique that attempts to conceal the location

of replicated services from an adversary. All these approaches use

whole-system replication of services, which offers less protection

than DeDoS because of the significant resource waste. Unlike exist-

ing approaches, DeDoS does not attempt to recognize legacy attacks

and deploy pre-developed defenses; instead, DeDoS dynamically

responds to new attacks by cloning just the system components

that are under attack.

Function-as-a-Service and Micro-services platforms: DeDoS
is conceptually related to the trend toward fine-grained granularity

decomposition of functions seen in FaaS platforms [17]. However,

those platforms [5, 6, 9, 10] have often constraints that make them

unsuitable for the deployment of stateful, long-lived services. Sim-

ilarly, DeDoS is not a Micro-services platform. We envision that

DeDoS can be integrated to those platforms.

9 CONCLUSION
DeDoS is a new approach to defending against asymmetric DoS

attacks. In DeDoS, software is built as a set of functional units called

Minimal Splittable Units (MSUs) that can be replicated indepen-

dently when under attack. DeDoS allows for more flexible allocation

of resources and can efficiently dedicate more resources to MSUs

under attack. Our evaluation shows that DeDoS runs with mod-

est overheads and constitutes an effective defense against several

state-of-the-art DoS attacks.

10 ACKNOWLEDGMENTS
This material is based upon work supported in parts by NSF Grants

CNS-1527401, CNS-1513679, CNS-1563873, CNS-1703936, CNS-1453392,

CNS-1513734, CNS-1704189, CNS 1750158, and CNS-1801884, as

well as by the the Defense Advanced Research Projects Agency

(DARPA) under Contracts No. HR0011-16-C-0056, No. HR001117C0047

and No. HR0011-16-C0061. Any opinions, findings and conclusions

or recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of DARPA or NSF.

REFERENCES
[1] 2011. SSL Renegotiation DoS. (2011). https://www.ietf.org/mail-archive/web/tls/

current/msg07553.html.

[2] 2017. DeDOS demonstration at SIGCOMM 2017. https://www.youtube.com/

watch?v=KX4EPnUzDqk. https://www.youtube.com/watch?v=KX4EPnUzDqk

[3] 2017. Regular expression Denial of Service - ReDoS. (2017). https://www.owasp.

org/index.php/Regular_expression_Denial_of_Service_-_ReDoS.

[4] 2017. Tsung. http://tsung.erlang-projects.org/. http://tsung.erlang-projects.org/

[5] 2018. AWS Lambda. https://aws.amazon.com/lambda. https://aws.amazon.com/

lambda

[6] 2018. Azure functions. https://functions.azure.com. https://functions.azure.com

[7] 2018. Common Vulnerabilities and Exposures (see CVE-2015-8386). (2018).

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8386.

[8] 2018. DeDOS on GitHub. https://github.com/dedos-project/DeDOS. https:

//github.com/dedos-project/DeDOS

[9] 2018. Google Cloud Functions. https://cloud.google.com/functions.

[10] 2018. OpenWhisk. https://developer.ibm.com/openwhisk.

[11] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. 2013. The datacenter as a

computer: An introduction to the design of warehouse-scale machines. Synthesis
lectures on computer architecture 8, 3 (2013), 1–154.

[12] Ang Chen, Akshay Sriraman, Tavish Vaidya, Yuankai Zhang, Andreas Haeberlen,

Boon Thau Loo, Linh Thi Xuan Phan, Micah Sherr, Clay Shields, and Wenchao

Zhou. 2016. Dispersing Asymmetric DDoS Attacks with SplitStack. In Proc.
HotNets.

[13] Henri Maxime Demoulin, Tavish Vaidya, Isaac Pedisich, Nik Sultana, Bowen

Wang, Jingyu Qian, Yuankai Zhang, Ang Chen, Andreas Haeberlen, Boon Thau

Loo, et al. 2017. ADemonstration of the DeDoS Platform for DefusingAsymmetric

DDoS Attacks in Data Centers. In Proceedings of the SIGCOMM Posters and Demos.
ACM.

[14] F5. 2018. SSL Acceleration. https://f5.com/glossary/ssl-acceleration.

[15] Seyed K. Fayaz, Yoshiaki Tobioka, Vyas Sekar, and Michael Bailey. 2015. Bohatei:

Flexible and Elastic DDoS Defense. In Proc. USENIX Security.
[16] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert Lin, and Olin Shivers.

1997. The Flux OSKit: A Substrate for Kernel and Language Research. In Proc.
SOSP.

[17] Sadjad Fouladi, Riad SWahby, Brennan Shacklett, Karthikeyan Balasubramaniam,

William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and Keith

Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video Processing Using

Thousands of Tiny Threads.. In NSDI. 363–376.

https://www.ietf.org/mail-archive/web/tls/current/msg07553.html
https://www.ietf.org/mail-archive/web/tls/current/msg07553.html
https://www.youtube.com/watch?v=KX4EPnUzDqk
https://www.youtube.com/watch?v=KX4EPnUzDqk
https://www.youtube.com/watch?v=KX4EPnUzDqk
https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS
https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS
http://tsung.erlang-projects.org/
http://tsung.erlang-projects.org/
https://aws.amazon.com/lambda
https://aws.amazon.com/lambda
https://aws.amazon.com/lambda
https://functions.azure.com
https://functions.azure.com
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8386
https://github.com/dedos-project/DeDOS
https://github.com/dedos-project/DeDOS
https://github.com/dedos-project/DeDOS
https://cloud.google.com/functions
https://developer.ibm.com/openwhisk
https://f5.com/glossary/ssl-acceleration

DeDoS: Defusing DoS with Dispersion Oriented Software ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

[18] Sean Gallagher. 2016. Double-dip Internet-of-Things Botnet Attack

Felt Across the Internet. https://arstechnica.com/security/2016/10/

double-dip-internet-of-things-botnet-attack-felt-across-the-internet/.

[19] Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen Liedtke, Kevin J. Elphinstone,

Volkmar Uhlig, Jonathon E. Tidswell, Luke Deller, and Lars Reuther. 2000. The

SawMill Multiserver Approach. In Proc 9th ACM SIGOPS European Workshop.
109–114.

[20] Gkbrk. 2018. SlowLoris attack tool. https://github.com/gkbrk/slowloris.

[21] Saikat Guha, Paul Francis, and Nina Taft. 2008. ShutUp: End-to-End Containment
of Unwanted Traffic. Technical Report. Cornell University.

[22] Quan Jia, Huangxin Wang, Dan Fleck, Fei Li, Angelos Stavrou, and Walter Powell.

2014. Catch Me if You Can: A Cloud-Enabled DDoS Defense. In Proc. DSN.
[23] Cheng Jin, Haining Wang, and Kang G. Shin. 2003. Hop-count filtering: an

effective defense against spoofed DDoS traffic. In Proc. CCS.
[24] Joyent Inc. and other Node contributors. [n. d.]. NodeJS HTTP Parser. https:

//github.com/nodejs/http-parser.

[25] Christine Kern. 2016. Increased Use Of Multi-Vector DDoS At-

tacks Targeting Companies. (2016). http://www.bsminfo.com/doc/

increased-use-of-multi-vector-ddos-attacks-targeting-companies-0001.

[26] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.

2000. The Click Modular Router. ACM Trans. Comput. Syst. 18, 3 (Aug. 2000),
263–297.

[27] Soom Bum Lee, Min Suk Kang, and Virgil D. Gligor. 2013. CoDef: Collaborative

Defense Against Large-Scale Link-Flooding Attacks. In Proc. CoNEXT.
[28] Qi Liao, David A. Cieslak, Aaron D. Striegel, and Nitesh V. Chawla. 2008. Using

selective, short-term memory to improve resilience against DDoS exhaustion

attacks. Security and Communication Networks 1, 4 (2008), 287–299.
[29] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M.

Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion

Stoica. 2009. Declarative networking. Comm. ACM 52, 11 (Nov. 2009), 87–95.

[30] Ratul Mahajan, Steven M. Bellovin, Sally Floyd, John Ioannidis, Vern Paxson, and

Scott Shenker. 2002. Controlling High Bandwidth Aggregates in the Network. In

Proc. CCR.
[31] Sam Newman. 2015. Building microservices: designing fine-grained systems. "

O’Reilly Media, Inc.".

[32] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert Green-

berg, David A. Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu Wu,

Changhoon Kim, and Naveen Karri. 2013. Ananta: Cloud Scale Load Balancing.

In Proc. SIGCOMM.

[33] John Pescatore. 2014. DDoS Attacks Advancing and Enduring: A SANS Survey.
Technical Report. SANS Institute.

[34] picoTCP 2018. picoTCP. http://www.picotcp.com/.

[35] Christian Rossow. 2014. Amplification Hell: Revisiting Network Protocols for

DDoS Abuse. In Proc. NDSS.
[36] Fabrice J. Ryba, Matthew Orlinski, Matthias Wählisch, Christian Rossow, and

Thomas C. Schmidt. 2015. Amplification and DRDoS Attack Defense – A Survey

and New Perspectives. CoRR abs/1505.07892 (2015). http://arxiv.org/abs/1505.

07892

[37] David Senecal. 2013. Slow DoS on the Rise. (2013). https://blogs.akamai.com/

2013/09/slow-dos-on-the-rise.html.

[38] Willy Tarreau. 2018. HA-Proxy load balancer. http://haproxy.com/.

[39] Matt Welsh, David Culler, and Eric Brewer. 2001. SEDA: An Architecture for

Well-conditioned, Scalable Internet Services. In Proc. SOSP.
[40] Jianxin Yan, Stephen Early, and Ross Anderson. 2000. The XenoService – A

Distributed Defeat for Distributed Denial of Service. In Proc. ISW.

[41] Saman Taghavi Zargar, James Joshi, and David Tipper. 2013. A Survey of Defense

Mechanisms Against Distributed Denial of Service (DDoS) Flooding Attacks.

IEEE Communications Surveys & Tutorials 15, 4 (2013), 2046–2069.

https://arstechnica.com/security/2016/10/double-dip-internet-of-things-botnet-attack-felt-across-the-internet/
https://arstechnica.com/security/2016/10/double-dip-internet-of-things-botnet-attack-felt-across-the-internet/
https://github.com/gkbrk/slowloris
https://github.com/nodejs/http-parser
https://github.com/nodejs/http-parser
http://www.bsminfo.com/doc/increased-use-of-multi-vector-ddos-attacks-targeting-companies-0001
http://www.bsminfo.com/doc/increased-use-of-multi-vector-ddos-attacks-targeting-companies-0001
http://www.picotcp.com/
http://arxiv.org/abs/1505.07892
http://arxiv.org/abs/1505.07892
https://blogs.akamai.com/2013/09/slow-dos-on-the-rise.html
https://blogs.akamai.com/2013/09/slow-dos-on-the-rise.html
http://haproxy.com/

	Abstract
	1 Introduction
	2 Motivating Example
	2.1 Strawman solutions
	2.2 DeDoS solution

	3 DeDoS Design
	3.1 Minimum splittable units
	3.2 Inter-MSU communication
	3.3 Routing tables
	3.4 DeDoS runtime API
	3.5 Support for existing applications

	4 Resource Allocation
	4.1 Machine-local scheduling
	4.2 Initial MSU assignment
	4.3 Cloning and merging

	5 Implementation
	5.1 Overview
	5.2 DeDoS local runtime

	6 Case Studies
	7 Evaluation
	7.1 Overheads
	7.2 Attack mitigation

	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References

