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Abstract
Denial of service (DoS) attacks increasingly exploit algo-

rithmic, semantic, or implementation characteristics dormant
in victim applications, often with minimal attacker resources.
Practical and efficient detection of these asymmetric DoS
attacks requires us to (i) catch offending requests in-flight, be-
fore they consume a critical amount of resources, (ii) remain
agnostic to the application internals, such as the programming
language or runtime system, and (iii) introduce low overhead
in terms of both performance and programmer effort.

This paper introduces FINELAME, a language-independent
framework for detecting asymmetric DoS attacks. FINELAME
leverages operating system visibility across the entire soft-
ware stack to instrument key resource allocation and negotia-
tion points. It leverages recent advances in the Linux extended
Berkeley Packet Filter virtual machine to attach application-
level interposition probes to key request processing func-
tions, and lightweight resource monitors—user/kernel-level
probes—to key resource allocation functions. The data col-
lected is used to train a model of resource utilization that
occurs throughout the lifetime of individual requests. The
model parameters are then shared with the resource monitors,
which use them to catch offending requests in-flight, inline
with resource allocation. We demonstrate that FINELAME
can be integrated with legacy applications with minimal ef-
fort, and that it is able to detect resource abuse attacks much
earlier than their intended completion time while posing low
performance overheads.

1 Introduction

Denial-of-Service (DoS) attacks aim to hinder the availability
of a service from its legitimate users. They work by over-
whelming one or more of the resources of the service (e.g., ,
CPU, network, memory, or disk), causing the service to be-
come slow or, in the limit, entirely unavailable.

Classic DoS attacks are simple in structure: attackers, in
large-scale, brute-force volumetric attacks, send many re-

quests that far exceed the service’s available resources. Al-
though potentially crippling—sometimes reaching aggregate
volumes of terabits per second [24, 43]—many effective mit-
igation techniques have been developed over the years, in-
cluding commercial services like CloudFlare, Akamai, or the
intrusion detection systems of Arbor Networks.

In response to these defenses, recent attacks have be-
come much more sophisticated in nature: rather than rely-
ing on the sheer volume, they take the form of highly spe-
cialized, application-specific asymmetric DoS (ADoS) at-
tacks [11, 12, 36, 48]. These attacks contain carefully-crafted,
pathological payloads that target algorithmic, semantic, or
implementation characteristics of the application’s internals.
They require significantly lower volumes of traffic and at-
tacker resources to compromise resource availability. With
the prevalence of third-part libraries, broad swaths of appli-
cations can be vulnerable to a given attack. For instance, the
Regular-Expression DoS (ReDoS) attack [12, 13, 51] affects
many programs that use regular expressions by leveraging
algorithmic complexity to craft a single payload of a few
characters that can occupy a service for several hours.

Due to this increase in sophistication, existing defenses are
becoming inadequate [10, 26–28, 31, 40, 54, 60–62]. Network-
based defenses are generally ineffective against ADoS attacks
because these attacks lack identifiable problematic patterns at
the network level. To be successful, network tools would not
only need to perform deep packet inspection, but would also
need to be able to predict which requests will hog resources a
priori—a challenge analogous to solving the halting problem.
Similarly, existing application-level defenses are limited in
their efficacy: since these attacks can target arbitrary resources
and arbitrary components of the service, which may be written
in different programming languages and contain multiple
binary third-party packages whose source code is not available
or with complex dependencies, manual instrumentation of
the application is prohibitively difficult, expensive, and time-
consuming.

This paper presents the design and implementation of
FINELAME (Fin-Lahm), a practical framework for detect-



ing ADoS attacks. In FINELAME, users only need to annotate
their own code to mark the start and end of request process-
ing; in many cases, annotations are not even required as ap-
plications lend themselves naturally to this demarcation. Our
interaction with the most recent Apache Web Server1 and
Node.js2 versions, for example, involves tracing three and
seven functions, respectively, and not a single modification
in their source code. Based on the annotations, FINELAME
automatically tracks CPU, memory, storage, and networking
usage across the entire application (even during execution of
third-party compiled binaries). It does so with low overhead
and at an ultra-fine granularity, which allows us to detect di-
vergent requests before they leave the system and while they
are attempting to exhaust resources.

Enabling our approach is a recent Linux feature called
extended Berkeley Packet Filter (eBPF). eBPF enables the
injection of verified pieces of code at designated points in
the operating system (OS) and/or application, regardless of
the specific programming language used. The OS is a nat-
ural, de facto layer of resource arbitration, with extensive
infrastructure and pluggable tooling for fine-grained resource
monitoring and distribution. By interposing on key OS ser-
vices, such as the network stack, the scheduler, and user-level
memory management facilities, FINELAME can detect abnor-
mal behavior in a unified fashion across the entire software
stack at run time.

FINELAME consists of three synergistic components that
operate at the user/kernel interface. The first component al-
lows attaching application-level interposition probes to key
functions responsible for processing requests. These probes
are based on inputs from the application developers, and they
are responsible for bridging the gap between application-
layer semantics (e.g., HTTP requests) to its underlying operat-
ing system carrier (e.g., process IDs). Examples of locations
where those probes are attached include event handlers in a
thread pool. The second component attaches resource moni-
tors to user or kernel-space data sources. Examples of such
sources include the scheduler, TCP functions responsible for
sending and receiving packets on a connection, and the mem-
ory manager used by the application. To perform anomaly
detection, a third component deploys a semi-supervised learn-
ing model to construct a pattern of legitimate requests from
the gathered data. The model is trained in the user space, and
its parameters are shared with the resource monitors through-
out the system, so that anomaly detection can be performed
in-line with resource allocation.

In summary, we make the following contributions:

• A novel, backward-compatible architecture at the user/k-
ernel interface for transparently implanting resource
monitors, exposed to applications via a probe API.
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Fig. 1: Billion Laughs (XML Bomb) Attack. Under a normal load of about
500 requests per second, legitimate users experience a median of 6.75ms
latency. After a short period of time, we start a malicious load of 10 requests
per second (shaded area). XML bombs can take up to 200ms to compute (vs.
a median of about 60ns for normal input). As a results, legitimate requests get
serviced much slower, experiencing up to 2s latency. Setup details covered
in (§6).

• A library of resource monitors and associated probes
that can be used to detect asymmetric DoS attacks.

• An eBPF-based implementation and evaluation of
FINELAME on Linux.

Our evaluation shows that FINELAME requires low addi-
tional instrumentation overhead, requiring between 4-11%
additional overhead for instrumenting web applications rang-
ing from Apache, Node.js, and DeDOS [15]. Moreover, when
evaluated against real application-layer attacks such as Re-
DOS [5], Billion Laughs [3], and SlowLoris [46], FINELAME
is able to detect the presence of these attacks in near real-time
with high accuracy, based on the attack deviation from normal
behavior.
The rest of the paper is structured as follows: it first motivates
FINELAME’s goals by providing a brief overview of asym-
metric DoS attacks (§2); it then lays out our threat model and
assumptions (§3); it describes the FINELAME’s design and
its three component parts, (i) request mapping (§4.1), (ii) re-
source monitoring (§4.2), and (iii) anomaly detection (§4.3); it
next details several prototype implementations (§5) and evalu-
ates the FINELAME prototypes’ intrusiveness, overheads and
accuracy, using a combination of micro-benchmarks and real
applications (§6); finally, it compares with prior work (§7)
and concludes with a discussion of limitations and possible
directions for future research (§8).

2 Motivation

We begin by showing via an example server-side application
the operation of an ADoS attack, the limitations of current
detection mechanisms, and design goals for our system.

2.1 Background on ADoS Attacks
Fundamentally, asymmetric DoS attacks are attacks that lever-
age application-specific behaviors to cause disproportionate
harm to the system using comparatively low amount of at-
tacker resources. They can target any layer of the stack and



any resource within the system. ADoS vulnerabilities are
widespread and often affect entire software ecosystems [41].
We detail a few of them below.

Regular-expression DoS (ReDoS) [12, 13, 51]. ReDoS at-
tacks target programs that use regular expressions. Attackers
craft patterns that result in worst-case asymptotic behavior of
a matching algorithm. An example pattern is (a+)+, which
does not match any string of the form a*X, but requires the
system to check 2N decomposition of the pattern to reach that
conclusion, where N is the length of the target string.

XML Bomb [3]. An XML bomb (or Billion-Laughs attack) is
a malicious XML document that contains layers of recursive
data definitions3, resulting in quadratic resource consump-
tion: a 10-line XML document can easily expand to a multi-
gigabyte memory representation and consume an inordinate
amount of CPU time and memory on the server. Fig. 1 illus-
trates the impact of XML bombs on the latency of requests
on a susceptible server. Under normal operation, a load of
500 legitimate requests per second are served in less than 10
milliseconds each; under a low-volume attack of 10 XML
bombs per second, the latency jumps up to more than two
seconds. An XML bomb affects any serialization format that
can encode references (e.g., YAML, but not JSON).

Improper (de-)serialization [47, 52, 53]. This class of at-
tacks encompasses those where malicious code can be in-
jected into running services. These vulnerabilities are, unfor-
tunately, common in practice, and they allow malicious users
to, for instance, inject a for (;;) {} loop to stall a process
indefinitely.

Event-handler Poisoning (EHP) [14]. Attacks like the pre-
ceding can be additionally amplified in an event-driven frame-
work. In event-handler poisoning, attackers exploit the block-
ing properties of event-driven frameworks so that, when a
request unfairly dominates the time spent by an event han-
dler, other clients are further blocked from proceeding. Any
slowdown, whether it is in the service itself or in its recursive
layers of third-party libraries can contribute to this head-of-
line blocking.

2.2 Design Goals
The attacks in the previous section highlight several goals that
drive FINELAME’s design (§4) and implementation (§5).

In-flight Detection. Actions often need to be taken while the
offending requests are “in the work”—for example, when a
single request can bring the system down (e.g., cooperative
scheduling) or when subsequent defenses cannot be deployed
(e.g., IP spoofing). DoS detection needs to catch such re-
quests before they leave the system, by monitoring resource
consumption at a very fine temporal and spatial granularity.

3 For example, the first layer consists of 10 elements of the second layer,
each of which consists of 10 elements of the third layer, and so on.

Resource Independence. ADoS attacks may target arbitrary
system-level resources (CPU, memory, storage, or network-
ing), and may even target multiple resources (i.e., multi-vector
attacks). A desirable solution needs to be agnostic to the re-
source and able to handle any instance of inordinate consump-
tion.

Cross-component Tracking. Given the complex structure of
modern applications, ADoS attacks can also cross the bound-
aries of the application’s internal components or processing
phases. For instance, if a request causes the triggering of a
timeout to an event queue, resources consumed by the initial
request parsing and the timeout should both be attributed to
the same request.

Language Independence. Applications today combine sev-
eral ready-made libraries, which are written in multiple pro-
gramming languages and often available only as compiled
binaries. Thus, DoS detection should remain agnostic to the
application details such as the programming language, lan-
guage runtime, and broader ecosystem (e.g., packages, mod-
ules).

Minimal Developer Effort. Detection needs to impose min-
imal burden to developers and devops, who should benefit
from DoS mitigation without having to study the application
internals. Rather than presenting developers with an overabun-
dance of configuration knobs, a DoS detection system should
direct precious human labor at sprinkling applications with
key semantic information utilized at runtime.

3 Threat Model

To be more concrete, FINELAME assumes the following about
the attacker and the broader environment.

Threats. We consider a powerful remote attacker that (i) can
send arbitrary requests to a service hosting a vulnerable appli-
cation, (ii) has control over potentially all of the application’s
legitimate clients, and (iii) is aware of the application’s struc-
ture and vulnerabilities, including exploits in its dependency
tree. We do not distinguish between legitimate and malicious
clients who intersperse harmful requests that attack resources
with one or more benign requests. Specifically, any subset of
hosts can send any number of requests that may or may not
attack any subset of resources. We do not limit resources of
interest to CPU; attackers can target memory, file descriptors,
or any other limited resource in the host system. That means
that attacks can take the form of a single client attempting to
consume 100% of the CPU indefinitely, or of multiple attacks
from multiple clients over many of the system’s resources.

Assumptions. We assume (i) vulnerable but not actively mali-
cious code, and (ii) that FINELAME sees at least some benign
traffic. If all traffic is malicious from the beginning, in-flight
detection and mitigation become less urgent, as anomalies
become the norm, and the application owners should first



revise their deployment pipeline. We also assume that the
resource utilization of request processing can be attributed
to a single request by the end of each processing phase, even
if the processing phases is split into multiple phases across
different application components. As keeping a reference to
the originating request is a natural design pattern, in all of the
services we tested, a unique identifier was already available;
in cases where there is no such identifier, one must be added,
and we detail how to do so in section 4.

4 FINELAME Design

Figure 2 depicts the overall design of FINELAME. Conceptu-
ally, FINELAME consists of three main components:

• Programmer annotations that mark when a request is
being processed. FINELAME requires only a few annota-
tions, even for complex applications, to properly attribute
resource utilization to requests.

• Fine-grained resource monitors that track the resource
utilization of in-flight requests at the granularity of con-
text switches, mallocs, page faults.

• A cross-layer anomaly detection model that learns the
legitimate behavior and detects attacks as soon as they
deviate from such behavior.

Programmers can use FINELAME by annotating their appli-
cation with what we call request-mappers. These annotations
delineate, for each component and processing phase, the start
and end of processing, as well as the request to which re-
source utilization should be attributed. For example, in an
event-driven framework, the beginning and the end of each
iteration of the event handler loop should be marked as the
start and the end of a request’s processing, respectively.

At runtime, when FINELAME is installed on the host
environment, FINELAME attaches small, low-overhead re-
source monitors to particular points in the application or
operating system. The aforementioned request-mappers en-
able FINELAME to determine the request to which the re-
source consumed by a thread or process should be credited.
In section 5, we detail our out-of-the-box FINELAME library
of request-mappers and resource monitors for several popu-
lar cloud frameworks. Our library tracks the utilization of a
range of key OS-level resources; however, programmers can
further extend it with user-level resource monitors to track
application-specific resources (e.g., the occupancy of a hash
table).

Finally, FINELAME’s monitoring data is used to perform
lightweight, inline anomaly detection. Resource monitors first
feed data to a machine learning model training framework
that computes a fingerprint of legitimate behavior. Parameters
of the trained model are installed directly into the resource

monitors, which evaluate an approximation of the model to au-
tomatically detect anomalous behavior on-the-fly. The end re-
sult of FINELAME is a system for high-accuracy, fine-grained,
and general ADoS attack detection.

4.1 Request-mapping in FINELAME

Conceptually, there are three operations in request mapping:

• startProcessing(): This annotation denotes the start
of a processing phase. Any resource utilization or allo-
cations after this point are attributed to a new unique
request.

• attributeRequest(reqId): As soon as we can de-
termine a unique and consistent request identifier, we
map the current processing phase to that request. For
instance, when reading packets from a queue, if the best
consistent identifier for a packet is its 5-tuple, resource
tracking would start as soon as the packet is dequeued,
but would only be attributed to a consistent request ID
after Layer-3 and Layer-4 processing are completed. In
general, attributeRequest(reqId) is called directly
after startProcessing(), and depending on the spe-
cific of the application, the two can sometimes be merged
(§ 5).

• endProcessing(): Finally, this operation denotes the
completion of processing, indicating that subsequent uti-
lization should not be attributed to the current request.

In order for the resource monitors to properly attribute
utilization to a request, FINELAME requires programmers
to annotate their applications using the above three request
mapping operations. Ideally, the annotations should cover as
much of the code base as possible; however, not all resource
utilization can be attributed to a single request. In such cases,
programmers have flexibility in how they perform mapping:
for true application overhead—rather than request process-
ing overhead—utilization can remain unattributed, and for
shared overhead (e.g., garbage collection), utilization can be
partitioned or otherwise assigned stochastically.

Every request is given an identifier that must be both unique
and consistent across application components and processing
phases. This identifier is used to maintain an internal mapping
between OS entity (process or thread) and the request. Exam-
ple identifiers include the address of the object representing
the request in the application, a request ID generated by some
application-level tracing solution [7, 20, 29, 34, 45, 49, 55],
or a location in memory if the request is only processed
once. From the moment a startProcessing annotation is
called to the moment the endProcessing annotation is called,
FINELAME will associate all the resources consumed by the
OS entity to the request.

An optimization of this technique can be implemented
when the application lends itself naturally to such mapping
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Fig. 2: FINELAME overview. Key elements: (1, right) user and kernel data-collection probes at points where an HTTP request interacts with resource allocation;
(2, mid-left) a data structure shared between user and kernel space, that aggregates and arranges collected data; (3, left) a userspace training component that
instantiates model parameters, fed back to the probes. Information flow between 1–3 is bidirectional.

between OS entity and request. For instance, event-driven
frameworks or thread-pool based services usually have a sin-
gle or small number of entry points for the request, to which
FINELAME can readily attach request-mappers via eBPF with-
out source code modification. We found this optimization to
be the common case, and FINELAME does not require any
modification to the application we explore in section 6.

4.2 Resource Monitoring in FINELAME

Resource tracking between startProcessing and
endProcessing annotations are done via a recent Linux
kernel feature called eBPF. We first provide some background
on the operation of eBPF, and then discuss how we utilize
it to perform extremely fine-grained resource monitoring of
in-flight requests.

4.2.1 Background on eBPF

The original Berkeley Packet Filter (BPF) [35] has been a
long-time component of the Linux kernel networking subsys-
tem. It is a virtual machine interpreting a simple language
traditionally used for filtering data generated by kernel events.
Notable use cases are network packets parsing with Tcp-
dump [56] and filtering access to system calls in the seccomp
facility. In version 3.0 a just-in-time compiler was imple-
mented, allowing for a considerable speedup of the processing
of BPF programs by optimizing them on the fly.

In version 3.15, Alexei Starovoivtov significantly extended
BPF (dubbing the new system “eBPF”). The new version has
access to more registers and an instruction set mimicking a na-
tive RISC ISA, can call a restricted subset of kernel functions,
and can share data from kernel-space to user-space through
hash-like data structures. While eBPF is a low-level language,
users can write programs in higher languages such as C (and
even Python with the BCC project [2]) and generate eBPF
code with compilers such as GCC and LLVM.

Generated programs are verified before being accepted in
the kernel. The verifier imposes a set of strict constraints to
eBPF programs to guarantee the safety of the kernel. Common
constraints include the absence of floating point instructions,

a limit of 4096 instructions per program, a stack size capped
at 512 Bytes, no signed division, and the interdiction of back-
edges in the program’s control flow graph (i.e., no loops).

The ability of eBPF programs to be attached to both kernel
and user-space functions and events, their extremely low over-
head, and their ability to share data with user space without the
need for any IPC or queuing mechanism make eBPF a prime
candidate for implementing resource monitors in FINELAME.

4.2.2 Resource Monitor Architecture

FINELAME’s resource monitors are attached to various user-
and kernel-space data sources (e.g., the scheduler or TCP
stack) and use the mapping described in section 4.1 to as-
sociate resource consumption to application-level workflow
(e.g., HTTP requests). A resource monitor requires the follow-
ing information: the type and name of the data source, and
potentially the path of its binary.

Our current prototype of FINELAME uses the features listed
in Table 1. When executed, most resource monitors operate
under the following sequence of actions: i) verify whether a
request mapping is active for the current PID and exit if not;
ii) collect the metric of interest (usually through the arguments
of the function triggering it) and store it, time-stamped, in
a shared data structure; and iii) perform anomaly detection
on the request if the model’s parameters are available (see
section 4.3).

The time a request spends executing instructions on a pro-
cessor is represented by cputime. We instrument both the
scheduler_tick() and the finish_task_switch() kernel functions,
which are called at every timer interrupt and context switch,
respectively, to either start a timer when a thread execut-
ing a registered request is scheduled for execution or col-
lect the amount of CPU time consumed by the task swapped
out. We instrument the tcp_sendmsg() and tcp_rcleanbuf()
to collect tcp_sent and tcp_rcvd, the amounts of bytes sent
and read from a TCP connection, respectively. To compute
tcp_idle_time, which represents the period of inactivity from
the sender on a TCP connection, we measure the time elapsed
between two occurrences of tcp_cleanup_rbuf(). To monitor
the heap memory consumption occasioned by the processing



Name Description Event Type

tcp_idle_time Inactivity time on a TCP connection tcp_cleanup_rbuf kernel probe
tcp_sent Bytes sent through TCP connections tcp_sendmsg kernel probe
tcp_rcvd Bytes received through TCP connections tcp_cleanup_rbuf kernel probe
cputime Amount of CPU time consumed scheduler_tick, finish_task_switch kernel probe
malloc_memory Bytes allocated through the malloc function glibc_malloc user probe
page_faults Number of page faults events exceptions:page_fault_user kernel tracepoint

Tab. 1: Default resource monitors in FINELAME.

of a request, we monitor the glibc malloc function. Applica-
tions where memory management is partly handled by the
runtime (such as in Python) can be monitored in a similar
fashion. Likewise, the model can be generalized to garbage
collected languages. Finally, we monitor the page fault events
in the application by attaching a resource monitor to the ex-
ception: page_fault_user kernel tracepoint. We observed in
our evaluation that CPU time was the best discriminant for
CPU based attacks, while connection idle time the best for
slow attacks (such as Slowloris and RUDY).

The above default, general-purpose resource monitors in
FINELAME are sufficient for a large set of existing applica-
tions; however, it can be extended to all the kernel events
available for tracing and probing, as well as user-level func-
tions (to monitor application-level metrics). If any application-
level metrics are required (such as data structure occupancy,
counters, and so on), programmers can augment our resource
monitors with custom eBPF programs attached to arbitrary
probe points in either kernel- or user-space.

4.3 Attack Detection in FINELAME

Detection algorithm. For fast detection, FINELAME is de-
signed to enable anomaly detection as close as possible to
the resource allocation mechanism. Without a method for
in-flight anomaly detection in addition to mechanisms for
in-flight resource tracing, detection and mitigation of in-flight
requests would not be possible.

This detection problem can be reduced to quantizing the
abnormality of a vector in n-dimensional space. Once a suf-
ficient amount of data has been gathered to compute a fin-
gerprint of the legitimate requests’ behavior, we can train an
anomaly detection model. The model can span all the metrics
collected by the resource monitors, allowing us to detect abuse
on any of the resources of the system as well as cross-resource
(multi-vector) attacks.

For the unsupervised version of this problem, the most pop-
ular methods take one of two approaches: distance-based or
prediction-based. The former family of models aims to cluster
known, legitimate data points and compute the distance of
new data points to those clusters—distance that is used to
quantify the anomaly. The latter family assumes the existence
of a set of input data points that are correct, and learns a func-
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FPAS # FPA scaling factor
pid_to_rid # OS carrier to request
req_points # Request profiles
model_params # K-means parameters
dp_dists # Distances to centroids
thresholds # Alerts cut-off bar

fun resource_monitor(context):
pid = bpf_get_current_pid()
rid = pid_to_rid.get(pid)
if (rid):

ts = get_timestamp()
metric = context.get_arguments()
dp = req_points.get(rid)
if (dp):

dp.update(metric , ts)
else:

dp = init_dp(rid, metric , ts)
req_points.insert(dp)

µ, σ = model_params.get()
if (µ && σ):

metric_scaled = metric << FPAS
metric_scaled -= µ
if metric_scaled < 0:

metric_scaled *= -1
metric_scaled /= σ

metric_scaled *= -1
else:

metric_scaled /= σ

min_dist , closest_k
#pragma loop unroll
for k in K:

current_dist =
dp_dists.get(dp, k)

new_dist =
metric_scaled+current_dist

dp_dists.update(dp, new_dist)
if (new_dist < min_dist):

min_dist = new_dist
closest_k = k

t = thresholds.get(closest_k)
if new_dist > t:

report(rid, dp, s)

Fig. 3: FINELAME anomaly detection. Pseudocode for FINELAME’s inline
anomaly detection.

tion representing those points. When a new point enters the
system, the model computes the value of the learned function;
the prediction error is then used to quantify the degree of



anomaly.
Because of the training complexity, prediction complexity,

and required training data, many existing solutions in both
distance-based and prediction-based categories are imprac-
tical to execute at fine granularity. For instance, the popular
algorithm DBSCAN [18] is not suitable for FINELAME, as it
requires us to evaluate the distance of new data points to all
the possible “core” data points in the model. The amount of
data points considered (and therefore the size of the model)
is usually linearly proportional to the size of the training set.
Some accurate approximations of DBSCAN have been pro-
posed [22], but even with a small number of clusters, almost
all of the training dataset still needs to be part of the model.
Likewise, the performance of prediction-based models made
on neural networks, such as Kitsune [38], is highly dependent
on the depth and width of the model. The amount of parame-
ters of such networks grows exponentially with the number
and size of the hidden layers.

Given the above concerns, we chose to implement anomaly
detection in FINELAME with K-means, a technique that al-
lows us to summarize the fingerprint of legitimate requests
with a small amount of data. In K-means, the objective func-
tion seeks to minimize the distance between points in each
cluster. The model parameters are then the centroids and dis-
tribution of the trained clusters. In a typical use-case scenario,
FINELAME is configured to perform only request monitoring
for a certain amount of time, after which it trains k-means on
the monitoring data gathered in user-space from the resource
monitors shared maps. In practice, we found that a K value
equal to the number of request types in the application yields
a reasonable estimation of the different behaviors adopted by
legitimate requests, while being a number low enough such
as to contain FINELAME’s overhead.
Model training and deployment. Gathering the training
data is done by a simple look-up from the user-space agent
to the shared eBPF maps holding the requests resource con-
sumption data. Using those profiles, the user-space agent
standardizes the data (center to 0 and cast to unit standard
deviation). Subsequently, the agent trains K-means to gener-
ate a set of centroids representing the fingerprint of the good
traffic. The parameters of the model, to be shared with the
performance monitors, are then the cluster centroids, as well
as the mean µ and standard deviation σ of each feature in the
dataset, and a threshold value τ statistically determined for
each cluster.

As described above, the performance monitors have lim-
ited computing abilities and do not have access to floating
point instructions. Thus, they are designed to perform fixed
point arithmetic in a configurable shifted space, and require
FINELAME’s to shift the model parameters in this space be-
fore sharing them. Using two precision parameters a and b,
each datapoint is transposed in a higher space 10a, and normal-
ized such that the resulting value lies in an intermediate space
10a−b, retaining a precision of a−b digits. This means that

Application Request mapping probes SLOC

Apache 5 41
Node.js 9 64
DeDoS 2 21

Tab. 2: Intrusiveness of FINELAME, quantified.

during the normalization operation each parameter value x un-
dergoes the following transformation: x = (x ∗ 10a)− (µ ∗ 10a)

σ ∗ 10b .
Once standardized, the clusters’ centroids as well as each

feature’s mean and standard deviation are shared with the
resource monitors through eBPF maps. Upon availability
of those parameters, the resource monitors update not only
the resource consumption of existing requests, but also their
outlier scores, a measure we use to quantify the degree of
anomaly of a request. Due to the constraints imposed on eBPF
programs—specifically, taking a square root is complex as
we do not have access to loops—we choose the normalized
L1 distance to the closest cluster as the outlier score. While
being a crude measure, the L1 is equivalent to more complex
norms as resource vectors are of finite dimension. It preserves
information about which resource is abused, and it lets us
set statistical thresholds to determine cut-off points used for
flagging abnormal requests. The algorithm for this entire
process is shown in Figure 3.

Finally, we note that because FINELAME is primarily de-
signed toward the detection of resource exhaustion attacks,
we allow the anomaly detection engine to maintain signed
values for outlier scores. This means that requests that have
not reached their expected legitimate amounts of resource con-
sumption, and that would look abnormal in an absolute value
setting, are not flagged as such. This is important because
it highlights the fact that FINELAME is not geared toward
volumetric attacks that aim to bring the system down with a
vast amount of low consumption requests.

5 Use Cases and Implementation

To demonstrate the generality of FINELAME and the mini-
mal developer effort required to use it, we apply FINELAME
to three web platforms: Apache [1], which is estimated to
serve ∼40% of all active webpages; Node.js [4] a popular
server-side JavaScript-based web server; and DeDoS [15]
an open source component-based framework for building
web services. Our prototype of FINELAME is available on
https://github.com/maxdml/Finelame. Table 2 quanti-
fies the programming effort required to write request-mappers
for those three applications to use FINELAME.

Apache web server. Primarily written in C, Apache’s re-
quest processing is implemented by Multi-Processing Mod-
ules (MPM). In the latest versions of Apache (2.x), requests
are served by multiple processes which can have multiple

https://github.com/maxdml/Finelame


worker threads themselves; each thread handles one connec-
tion at a time.

When a request enters the system, an application-level
(conn) object is created by the core_create_conn func-
tion to contain it before the request is dispatched to
a worker thread. Subsequently, the request is processed
by either the ap_process_http_sync_connection or the
ap_process_http_async_connection functions, which
take the conn object as argument. From FINELAME, we
attach one request-mapper to core_create_conn, and two
requests-mappers to the http processing functions, one over
a uprobe called upon entering the function, the other over a
uretprobe called when returning from it. We exploit the conn
object to generate a unique identifier for each request and map
it to the underlying thread worker, so that resource monitors
can later gather resource consumption data on the request’s
behalf. The mapping is undone when the function returns and
the request exits the system. When a worker thread executes
a new request, the request-mapper updates the mapping with
the new request’s ID. This solution requires no modification
to the Apache source code, and 41 lines of eBPF code over 5
probes.

Node.js required more slightly more instrumentation due to
its asynchronous model, which offloads work to a worker
pool (implemented with libuv [30]). The instrumentation re-
quired eBPF probes to be attached to seven user-space func-
tions within the libuv library. As in Apache, we found a data
structure—struct uv_stream_t—that could (i) be used to
generate a unique identifier, and (ii) was carried consistently
across the disparate components of the framework.

Request-mappers were applied to the seven libuv functions
as follows:

• uv_accept: a new request is initialized, and is associ-
ated with the uv_stream_t structure that handled com-
munication with the client.

• uv__read and uv__write: the request associated with
the client’s stream is assigned to the current thread for
the duration of the function.

• uv__work_submit: the request assigned to the current
thread is associated with a work-request submitted to the
worker pool.

• uv__fs_work, and uv__fs_done: the request associ-
ated with the work-request is assigned to the current
(worker) thread.

• uv_async_send: the request is unassigned from the cur-
rent thread.

Again, this solution requires no changes in Node.js source
code, only knowledge of which functions are processing re-
quests. The request-mappers totalized 64 lines of eBPF code.

DeDoS is an event-driven framework where programmers
write and deploy their application as software components
that are automatically allocated and deallocated based on
demand. Each of those components monitor a local event-
queue from which new requests are consumed. Unifying the
disparate components is a generic event-handling function
(receive()). Programmers implement their component’s
functionality inside this event-handling function.

DeDOS provides request tracing and explicitly tracks the
passing of requests between components. We chose DeDoS
as a proof-of-concept proxy for micro-service, event-driven
applications providing request tracing capability. In these
types of applications, annotation is simple as FINELAME
can maintain a direct mapping between the application-level
unique request identifier and the event handler’s thread PID
in order to track resource consumption across component
boundaries. FINELAME traces only the receive() function
class with request mappers, and does not require modifications
to the framework. The request-mappers require 21 lines of
eBPF code.

6 Evaluation

In this section, we present our evaluation results of
FINELAME. Our evaluation is centered around the follow-
ing aspects of the system:

• Overhead. The overhead of FINELAME compared to no
monitoring, or in-application instrumentation

• Accuracy. The ability of FINELAME to accurately detect
real attacks never seen yet by the application

6.1 Experimental setup
We present the setup on which we evaluate both the overhead
and accuracy aspects of FINELAME. In all cases, the server
applications are running on a 12 cores Xeon Silver 4114 at
2.20GHz , while our legitimate and attack clients are running
on an Intel Xeon E5-2630L v3 at 1.80GHz. Both server and
client machines have a total of 62G of RAM, and have hyper-
threading and DVFS disabled.

We use version 2.4.38 of Apache, and configure it to use
50 worker threads. We use version 12.0.0− pre of Node.js
with the default configuration of 4 worker threads for libuv.
Both Apache and Node.js are configured to serve a set of
Wikipedia [59] pages. Node.js parses a regular expression pro-
vided in the request’s URI to find the path of the file to serve.
It’s parser, liburi, is vulnerable to the ReDoS attack. All the
applications impose a timeout of 20 seconds on connections.
We deploy a simple webserver in DeDoS which can process
three types of requests: serve a Wikipedia article, process a
randomly generated XML file uploaded in a POST request,
and parse a regular expression. The server is decomposed into



several software components: socket reading, HTTP parsing,
file serving, XML parsing, regular expression parsing, and re-
sponse writing. The XML parser is implemented with libxml2,
which is vulnerable to the Billion Laughs attack.

Our good traffic is generated by Tsung [6] and explores
evenly all the servers’ exposed endpoints; bad traffic is gener-
ated by an in-house C client for the ReDoS and Billion Laughs
attacks, and pylorys [23] for the Slowloris attack. Tsung gen-
erates load under an exponential distribution centered on a
configurable mean, while our attack client is configured to
send a fixed load.

6.2 Overhead of FINELAME

Figures 4 presents the overheads incurred by FINELAME’s
instrumentation on Apache, Node.js and DeDoS. In all of
our experimental setups, we evaluate the legitimate client
latency experienced when the server is not instrumented, when
it is instrumented by FINELAME, and when FINELAME’s
resource monitors are also performing anomaly detection
(FINELAME +). The load is as described earlier in sec 6.1, and
explore all the instrumented paths in the applications. We also
evaluate the cost of instrumenting the DeDoS framework itself
to evaluate FINELAME overheads compared to a traditional
user-space solution. The bars plot the median of the clients
latency, and all our experiments are run thrice for a period
of 100 seconds. In the case of Node.js the instrumentation
cost adds 8.55% overheads and adding anomaly detection
9.21%. In the case of Apache, FINELAME adds 11.38% and
11.72% overheads respectively. In the case of DeDoS, the
baseline latency is higher than with the two previous services,
due to the fact that the application is not only serving files
but also parsing POST requests, and also the framework is
less optimized than the two battle-tested Apache and Node.js.
Instrumenting directly the framework comes with an overhead
of 2.9%, while FINELAME comes with 4.23% overheads,
6.3% if also performing anomaly detection.

In general we observe that the overheads incurred by
FINELAME are higher when the baseline processing time
of the service is low, and does not grow linearly with the
complexity of the application. In addition, we found that per-
forming anomaly detection in addition to monitoring resource
consumption almost comes for free.

6.3 Performance of FINELAME

Our performance evaluation of FINELAME is centered around
its ability to detect attacks requests before they exit the system,
while providing accuracy competitive with non-approximated
user-level algorithms.

6.3.1 Attacks

Our experiments aim to quantify the impact of attacks on qual-
ity of service. Consequently, we tune attacks strength such
that they will not bring down the server but rather degrade the
quality of service provided to legitimate users.

ReDoS: This attack consist of specially crafted regular ex-
pressions which are sent to the server for processing. The
strength of the attack grows exponentially with the number of
malicious characters present in the expression. Because the
application processing units are busy handling those requests,
legitimate requests get queued for a longer period of time, and
ends-up being responded to more slowly.

Billion Laughs: The attack consists of XML files filled with
several levels of nested entities. The parsing cost is exponen-
tially proportional to the depth of the document. The impact
is similar to the ReDoS attack.

SlowLoris: The attack consists in maintaining open connec-
tions to the server, keeping them alive by sending individual
HTTP headers at a regular interval smaller than the server’s
timeout, but never completing the request—we assume that
the attacker is able to probe the service and discover this time-
out. As a result, the server’s connection pool gets exhausted,
and it can’t answer new requests. This technique can also
implement a dormant attack which cripples the ability of the
server to handle surges of legitimate traffic, by denying a
fraction of the total connection pool.

6.3.2 Anomaly Detection Performance

Evaluation metrics As is common with anomaly detectors,
the output of FINELAME is a score which quantifies the ab-
normality of a request. This score is then either used as a
raw metric for mitigation algorithms, or compared against a
threshold τ to be transformed into a binary variable where 0
means negative (no anomaly), and 1 means positive (attack).
With τ set, and using our knowledge of the ground truth, we
can determine the accuracy of each of the detector’s outputs
as true/false positive/negative. The choice of τ is crucial, as
too low a value can result in a large amount of false positive,
while too high a value can induce a large amount of false
negative. For our experiments, we set τ to be the outermost
point for each cluster in the training set, i.e., the most consum-
ing legitimate request we’ve seen so far for the cluster. The
challenge associated with deriving a large τ from the train-
ing traffic is that attacks can now take longer to detect—and
might not be detected at all if they are too weak. This latter
case does not concern us, because to bring down the system
with weaker attacks, an attacker would be forced to change
its method from asymmetric to volumetric. The benefit of a
higher τ is that it helps decreasing the False Positive Rate
(FPR, FP

FP+T N ), a desirable behavior for operators using the
system. For our experiments, we present the True Positive



(a) FINELAME overheads with DeDoS (b) FINELAME overheads with Apache (c) FINELAME overheads with Node.js

Fig. 4: Overhead of FINELAME with various applications

Rate (TPR, T P
T P+FN ), True Negative Rate (TNR, T N

T N+FP ) and
F1 ( 2T P

2T P+FP+FN ). TPR evaluates the system’s ability to detect
all the attack requests. TNR evaluates its ability to evaluate
legitimate requests as such. The F1 score is the harmonic
mean of the TPR and the recall. It evaluates both the TPR and
the precision of the system.

In addition to its post-hoc instrumentation abilities and low
programmer burden, the main contribution of FINELAME is
it’s detection pace. We evaluate the Detection Speedup (DS)
of the system, which we define as being the delta between
the time of last detection and the time to first detection, over
the lifetime of the request. We expect DS to increase as users
set more strict thresholds (lower values of τ), but found that
even with τ set to the outermost point in each training cluster,
FINELAME is able to detect attacks up to more than 97%
faster.

Experiments All our experiments are run for a duration of
400 seconds, split into 3 phases. The first phase sees only
legitimate traffic flowing through our target applications, and
last 200 seconds. FINELAME is configured to only have the
performance monitors gather data for the first 180 seconds,
after which point it triggers the training of the anomaly de-
tection model and share its parameters. Attacks start at time
200, and last for 150 seconds. A final period of 50 seconds
sees the attack stop, and only good traffic is sent to the ap-
plication. We perform two CPU exhaustion attacks, Billion
Laughs and ReDoS, as well as a connection pool exhaustion
attack, SlowLoris. For all experiments, we compare the TPR
and TNR of FINELAME to a non approximated user-space
implementation of K-means (that is, with floating point arith-
metic) to confirm that the system is competitive with more
complex user space solutions. We set K = 3, the maximum
number of request types that the application we setup can
accept, and use a = 10 and b = 6 factor to retain 4 digits in
fixed point arithmetic.

Table 3 presents the detection speed and performance of
FINELAME.

ReDoS: In our first experiment, we attack Node.js with three

strengths of ReDoS requests. In the two first experiments,
the workload is made of 98% of benign requests and 2% of
malicious regular expressions blocking the event loop of the
server (about 500 and 10 r/s, respectively). In the third ex-
periment, with the strongest attack, we reduce the attack rate
to 1 r/s, such that the attack does not bring down the server.
Legitimate requests are served in about 0.8ms on average
under normal conditions, but get delayed in proportion of the
intensity of the ReDoS requests when the attack starts. During
the first attack, bad requests are served in 23ms on average, a
28.75× increase compared to normal requests. Good requests
are also penalized and are served in about 4ms. During the
second attack, bad requests are served in 45.6ms on average,
a 57× increase compared to normal requests. Legitimate re-
quests are affected and incur an average latency of 13.5ms.
During the third attack, bad requests are served in 90.9ms
on average, a 113.6× increase. Legitimate requests incur an
average latency of 6ms. Due to its ability to credit requests’ re-
source consumption at the granularity of context switches, in
both experiments, FINELAME is able to detect attack requests
before they exist the system, at least 80.9% earlier for 50%
of the bad traffic, and up to 95.3% earlier. The user-space,
non-approximated evaluation of k-means using the L2 norm
for measuring distances, perform only marginally better.

Billion Laughs: In this experiment, we attack DeDoS with
two different strengths of Billion Laughs (XML bomb) re-
quests. The good traffic follows a diurnal pattern, oscillating
between 250 and 750 requests per second. Under normal con-
ditions, legitimate requests are served in 6.87ms on average.
In the first experiment, we send 15 malicious requests per
seconds (about 2% of the peak legitimate traffic, and 6% of
the lower phase), which are served in 29.28ms on average, a
4.26× increase in response time. In the second experiment,
we decrease the number of bad requests to one per second
(about 0.1% and 0.4% of the peak and low traffic, respec-
tively), and increase their intensity such that they are served
in 203ms in average (an order of magnitude increase com-
pared to the first case), which represents a 29.55× increase



Attack Strength TPR TNR F1 DS

FL K-means L2 FL K-means L2 FL K-means L2 median 75th max

ReDoS
28.7× 100% 100% 99.995% 99.999% 99.88% 99.98% 80.9% 81.2% 83.2%
57× 100% 100% 99.993% 99.994% 99.81% 99.83% 90.4% 90.5% 91.0%
113.7× 100% 100% 99.997% 99.999% 99.29% 99.76% 90.9% 95.1% 95.3%

Billion Laughs
4.7× 100% 100% 100% 100% 100% 100% 83.1% 85.5% 87.7%
34.8× 100% 100% 99.998% 99.998% 99.53% 99.76% 97.0% 97.1% 98.2%

SlowLoris 5 sockets 100% 100% 100% 100% 100% 100% 75% n/a n/a

Tab. 3: FINELAME TPR, and detection Speedup for Apache, Node.js and DeDoS.

in load compared to legitimate requests in normal conditions.
For the weaker attack, FINELAME is able to detect malicious
requests 78.83% faster than the user-space solution, at least
50% of the time, and up to and 97% faster for the strongest
attack.

SlowLoris: In this experiment, we configure Apache to han-
dle requests with 25 worker threads, and timeout on read-
ing HTTP headers after 20 seconds. We configure the attack
client to maintain 5 connections to the server opened at all
times, refreshing it every 5 seconds. Effectively, this drives
the tcp_idle_time of the malicious request high and makes
them standout from the legitimate ones. This attack is “all or
nothing”, in the sense that it will not impact the legitimate re-
quests until the connection pool gets exhausted. FINELAME’s
is able to detect the abnormal idle time about 75% faster than
the application (1− 5

20 ∗100), which would have otherwise to
experience the timeout before reporting the request.

7 Related Work

Volumetric Attack Detection There is a large body of work
addressing volumetric DoS attacks [10, 26, 31, 40, 60–62],
including attacks that target the network [27, 28, 54]. As de-
scribed earlier (§1), these systems do not protect against asym-
metric DoS attacks, a concern shared by both industry [32,50]
and academia [13, 14, 51].

Application-based Detection Prior works on application-
layer DoS detection either depend heavily on repeated outliers,
or are often deeply tied to a specific application. Techniques
include comparing the entropy of offending and legitimate
traffic [39, 63], sampling traffic flows [25], and sketch-based
feature-dimensionality reduction [58]. While these techniques
work well for volumetric attacks, they have self-assumed lim-
itations when the attack traffic is low—the primary focus of
this paper.

DSHIELD [44] is a system that assigns “suspicion scores”
to user sessions based on their distance from legitimate ses-
sion. While similar in nature to FINELAME’s anomaly detec-
tion technique, it relies on the operator knowing all the possi-
ble classes of requests that the server can process. FINELAME

anomaly detection engine learns on legitimate requests so that
it does not depend on a priori knowledge of execution paths
or vulnerabilities.

BreakApp [57] is a module-level compartmentalization
system that attempts to defend against DoS attacks, among
other threats stemming from third-party modules. While
BreakApp’s capabilities increase with more and smaller mod-
ules, FINELAME works even with monolithic applications
entirely developed as a single module. BreakApp’s mitigation
uses simple queue metrics (i.e., queue length at the module
boundary vs. replica budget), whose cut-off parameters are
statically provided by the programmer; FINELAME uses a
more advanced learning model, which parameters are adjusted
at runtime.

Rampart [36] focuses on asymmetric application-level CPU
attacks in the context of PHP. It estimates the distribution of
a PHP application function’s CPU consumption, and peri-
odically evaluates running requests to assess the likelihood
they are malicious. It then builds filters to probabilistically
drop offenders—repeated offenders increase their probability
of being filtered out. While FINELAME profiles legitimate
requests resource consumption, it is not limited to CPU-based
attacks. It also works with applications with components built
with many different languages.

In-kernel Detection Recent work has shown good results
for mitigating ADoS attacks by exploiting low level system
metrics. Radmin [16] and its successor Cogo [17] train Proba-
bilistic Finite Automatas (PFAs) offline for each resource of a
process they want to monitor, then perform anomaly detection
by evaluating how likely the process’ transition in the resource
space is. Training the PFAs requires days in Radmin, and min-
utes in Cogo, while FINELAME can train accurate models in
seconds or hundreds of microseconds. We expect this capabil-
ity to be helpful in production systems where the model has
to be updated, e.g., to account for changes in an application’s
component. In addition, Cogo reports detection time in the or-
der of seconds, while FINELAME’s inline detection operates
at the scale of the request’s complexity—milliseconds in our
experiments. Lastly, Radmin/Cogo operate at the granularity
of processes/connections. FINELAME assumes a worst-case
threat model where malicious requests are sent sporadically



by compromised clients, and thus operate at this granularity.
Per-request detection has the added benefit to enable pre-
cise root cause analysis, further enhancing the practicality of
FINELAME.

Programmer Annotations Prior work proposes an annota-
tion toolkit that programmers can use in their code to specify
resource consumption requirements [42]. The framework de-
tects connections that violate the provided specification (and
then attempts to mitigate by rate limiting or dropping them).
Unfortunately, it requires knowledge of the application in-
ternals. Worse even, it expects developers to understand the
program’s expected resource consumption quite accurately.
Moreover, such a hard cut does not distinguish between oc-
casional consumption that is slightly above limits and true
attackers.

Prevention-as-a-Service A recent vein of work proposed “At-
tack prevention as a Service”, where security appliances are
automatically provisioned at strategic locations in the net-
work [19, 37]. Those techniques are largely dependent on
attack detection (to which they do not provide a solution), and
thus are orthogonal to our platform, which operates directly
at the victim’s endpoint.

Performance anomaly detection ADoS attacks are a sub-
set of the broader topic of performance degradation, a topic
that has been extensively studied. Magpie [9] instruments
an application to collect events from the entire stack and
obtain request profiles post-mortem. X-trace [21] is a trac-
ing framework that preserves causal relationship between
events, and allow the offline reconstruction of request trees.
X-ray [8] builds on taint-tracking to provide record and replay
system to summarize the performance of application events
offline. One of FINELAME’s key difference with those sys-
tems is its lightweight in-flight profiling technique, which
allows us to perform anomaly detection while the request is
still in the system. Retro [33] provides a tracing architecture
for multi-tenant systems that enables the implementation of
resource management policies. While its architecture is simi-
lar to FINELAME’s, its focus is on performance degradation
caused by competing workloads, rather than the detection of
degradation within a single application.

While the impact can be similar, we note that for ADoS
attacks, in-flight request tracking is critical to timely detection
and mitigation.

8 Conclusion

In this paper, we describe and evaluate FINELAME, a
novel fine-grained application-level DoS detection frame-
work. FINELAME is designed for interaction with modern
distributed applications, operates orders of magnitude faster
than previous techniques, and is able to detect yet-unseen
attacks on an application. FINELAME is enabled by recent
advances in the Linux kernel, and bridges the gap between

application-layer semantic and low-level resource allocation
sub-systems. It is a first step toward deploying complex ma-
chine learning applications for fine grained services, in an era
where the size of services is shrinking (micro/pico-services).
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